Архангельск (8182)63-90-72 Астана (7172)727-132 Астарахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40

Пенза (8412)22-31-16 Россия (495)268-04-70

Орел (4862)44-53-42

Оренбург (3532)37-68-04

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64

Ярославль (4852)69-52-93

www.enserv.nt-rt.ru || epn@nt-rt.ru

Руководство по эксплуатации на многофункциональные измерительные преобразователи ЭНИП-2

Оглавление

Введ	цение	9	5	
Обоз	значе	ения и сокращения	7	
1	Опи	ісание устройства	9	
	1.1	Назначение	9	
	1.2	ЭНИП-2 Стандарт	10	
	1.3	ЭНИП-2 Компакт	15	
	1.4	ЭНИП-2 УСВИ (РМU)	17	
	1.5	Конструкция и габаритные размеры	19	
2	Tex	нические характеристики	25	
	2.1	Входы тока и напряжения	25	
	2.2	Измеряемые параметры	25	
	2.3	Условия эксплуатации	30	
	2.4	Метрологические характеристики	31	
	2.5	Дискретные входы	34	
	2.6	Дискретные выходы	36	
	2.7	Аналоговые выходы	38	
	2.8	Питание	39	
	2.9	ЭМС и изоляция	41	
3	Устройство и функциональные возможности			
	3.1	Принцип работы (на примере ЭНИП-2 Стандарт)	45	
	3.2	Телесигнализация	47	
	3.3	Телеуправление	49	
	3.4	Интерфейсы и протоколы обмена данными	52	
	3.5	Логические выражения	58	
	3.6	Часы	59	
	3.7	Журналы	61	
	3.8	Измерение энергии	62	
	3.9	Дисплей	62	
4	Ком	иплектность	63	
5	Исп	ользование по назначению	64	
	5.1	Указания по эксплуатации	64	
	5.2	Эксплуатационные ограничения	64	
	5.3	Подготовка к монтажу	64	
	5.4	Общие указания по монтажу	65	
6	Tex	ническое обслуживание и ремонт	66	
	6.1	Общие указания	66	

	6.2	Меры безопасности	66
	6.3	Порядок технического обслуживания	66
7	Hac	ройка прибора	69
	7.1	Обновление встроенного программного обеспечения	69
	7.2	Активация протокола МЭК 61850	
	7.3	Восстановление настроек по умолчанию	74
	7.4	Конфигурирование устройства	75
	7.5	Конфигурирование через web-интерфейс	75
	7.6	Конфигурирование через сенсорный дисплей	78
8	Рекс	омендации по подключению внешних цепей	79
	8.1	Подключение к цепям питания	79
	8.2	Подключение к измерительным цепям	81
	8.3	Подключение к цепям дискретных сигналов	81
	8.4	Подключение к датчикам контроля напряжения	93
	8.5	Подключение системы температурного контроля «Зной»	93
	8.6	Подключение индуктивных датчиков	94
	8.7	Подключение к внешним модулям индикации	94
	8.8	Подключение к информационным цепям	100
9	Обл	асти применения	101
	9.1	Системы телемеханики	101
	9.2	Цифровая подстанция	101
	9.3	СМПР	102
10	Диа	гностика состояния ЭНИП-2	104
11	Мар	кировка и пломбирование	105
	11.1	Маркировка	105
		 Пломбирование	
12	Tpai	нспортировка и хранение	107
13	•	ковка	
		ние А1. Схемы подключения преобразователей ЭНИП-2Х1, ЭНИП-2Х3	
•		• •	
•		ние А2. Схемы подключения преобразователей ЭНИП-232	
-		ние АЗ. Схемы подключения интерфейсов	
Прил	ложе	ние Б. ЭНИП-2: протокол связи Modbus	118
Прил	поже	ние В. ЭНИП-2: протоколы связи ГОСТ Р МЭК 60870-5-101-2006 и ГОСТ Р МЭК 6	60870
5-10	4-20	04	129
Прил	поже	ние Г. ЭНИП-2: описание протокола SNMP	150
Прил	ложеі	ние Д. ЭНИП-2: протокол связи МЭК 61850 8-1	156

Приложение Е. Соответствие ЭНИП-2Х3 стандарту IEEE С37.118	164
Приложение Ж. Проверка соответствия программного обеспечения	174
Приложение И. Алгоритмы обработки сигналов в ЭНИП-2Х3Х	176

Введение

Настоящее руководство по эксплуатации (далее – РЭ) преобразователей измерительных многофункциональных ЭНИП-2 (далее – ЭНИП-2) предназначено для обеспечения потребителя всеми сведениями, необходимыми для правильной эксплуатации ЭНИП-2. РЭ содержит технические данные, описание работы, указания по использованию, техническому обслуживанию, упаковке, транспортированию и хранению, а также схемы подключения ЭНИП-2 к измерительным цепям, цепям питания, телеуправления, телесигнализации, и цифровым интерфейсам. До начала работы с ЭНИП-2 необходимо ознакомиться с настоящим РЭ.

Целевая группа

Настоящее РЭ предназначено для персонала, осуществляющего проектирование, установку, наладку устройств.

Сфера действия документа

РЭ распространяет действие на устройства:

- ЭНИП-2, аппаратная версия 2.0 и выше (с USB портом),
- ЭНИП-2 (устройство синхронизированных векторных измерений).

Примечание: Используйте преобразователь ЭНИП-2 только по назначению, как указано в настоящем Руководстве.

Установка и обслуживание преобразователя ЭНИП-2 осуществляется только квалифицированным и обученным персоналом.

Преобразователь ЭНИП-2 должен быть сохранен от ударов.

Подключайте преобразователь ЭНИП-2 только к источнику питания с напряжением, соответствующим указанному на маркировке.

Внимание! Программное обеспечение постоянно совершенствуется и дополняется новыми функциональными настройками ЭНИП-2. Производитель оставляет за собой право вносить изменения и улучшения в ПО без уведомления потребителей.

Обозначения и сокращения

В настоящем руководстве по эксплуатации применяются следующие обозначения и сокращения:

- АСДУ автоматизированная система диспетчерского управления;
- АЦП аналого-цифровой преобразователь;
- КИХ-фильтр фильтр с конечной импульсной характеристикой;
- КП ТМ контролируемый пункт телемеханики;
- МК микроконтроллер;
- ПИ преобразователь интерфейса;
- ПК персональный компьютер;
- ПО программное обеспечение;
- СМПР система мониторинга переходных режимов;
- СП сигнальный процессор;
- ССПИ система сбора и передачи информации;
- ТИ телеизмерения;
- ТИИ интегральные телеизмерения;
- ТИТ текущие телеизмерения;
- ТС телесигнализация;
- ТУ технические условия;
- УСВИ устройство синхронизированных векторных измерений;
- УСД устройство сбора данных;
- ЭМС электромагнитная совместимость;
- PE (англ. Protective earth) защитное заземление;
- PMU (англ. Phasor Measurement Unit) устройство синхронизированных векторных измерений;
- RTU (англ. Remote Terminal Unit) удалённый терминал (сбора данных);

• SCADA – (аббр. от англ. Supervisory Control And Data Acquisition) Диспетчерское управление и сбор данных.

1 Описание устройства

1.1 Назначение

Устройства ЭНИП-2 осуществляют измерение параметров режимов электрических сетей переменного трехфазного тока с номинальной частотой 50 Гц, индикацию синхронизированных векторных измерений, выполнение функций телеуправления, телесигнализации и технического учета электроэнергии с обеспечением обмена информацией по гальванически развязанным цифровым интерфейсам RS-485 и/или Ethernet.

ЭНИП-2 предназначены для применения в составе систем сбора и передачи информации трансформаторных подстанций, распределительных пунктов (систем телемеханики), электростанций (АСДУ). ЭНИП-2 позволяют создавать распределенные системы телемеханики, системы технического учета электроэнергии, системы мониторинга качества электрической энергии, системы мониторинга переходных режимов.

ЭНИП-2 обеспечивают передачу информации как напрямую, так и в составе систем телемеханики через сервера телемеханики или устройства сбора данных (контролируемые пункты телемеханики), например, ЭНКС-3м, ЭНКМ-3.

1.2 ЭНИП-2 Стандарт

Условное обозначение: ЭНИП-2-...-Х1.

Преобразователь ЭНИП-2 выполнен в литом корпусе из пластмассы, не поддерживающей горение. Предназначен для крепления на DIN-рельс. Для обеспечения пломбирования измерительных цепей предусмотрена возможность установки накладной прозрачной крышки с отверстиями под пломбы.

Модификация «Только измерения»

Рисунок 1.1. Модификация ЭНИП-2-...-А1Е0-01

Модификация ЭНИП-2-...-A1E0-01: на корпус выведены клеммы для подключения измерительных цепей тока и напряжения, цепей питания, интерфейса USB, а также цифрового интерфейса RS-485. На лицевой панели ЭНИП-2 присутствуют индикатор работы порта RS-485-1, а также индикатор питания.

Модификация «Оптимальный»

8 дискретных входов

4 дискретных входа, 3 дискретных выхода

Рисунок 1.2. Модификации ЭНИП-2-...-А2ЕО-21 и ЭНИП-2-...-А2ЕО-11

Модификации ЭНИП-2-...-A2E0-21 и ЭНИП-2-...-A2E0-11 в отличии от предыдущей модификации дополняется клеммами 8 дискретных входов (для ЭНИП-2-...-21), или 4 входов и 3 выходов (для ЭНИП-2-...-11), а также вторым интерфейсом RS-485 (RS-485-2), который конструктивно выполнен в виде двух разъемов RJ-45:

- левый разъем для подключения модулей расширения дискретных сигналов ЭНМВ;
- правый разъем с контактами питания (24В=) для подключения внешнего модуля индикации (допускается подключение прямым патч-кордом индикаторов типа ЭНМИ-3-24-X, ЭНМИ-4-24-2, ЭНМИ-4м-24-2, ЭНМИ-5-24-2 или ЭНМИ-7-24-1).

Модификация «Расширенный»

Рисунок 1.3. ЭНИП-2-...-А3Е4-21 (слева) и ЭНИП-2-...-A2SFP4-21 (справа)

Модификации ЭНИП-2-...-A3E4-X1 отличаются от предыдущих наличием третьего порта RS-485 (RS-485-3) и интерфейса Ethernet 100Base-TX или SFP-разъема.

Модификация «Максимум»

2 порта Ethernet 100Base-TX (коммутатор, RSTP, PRP)

2 порта Ethernet 100Base-FX (коммутатор, RSTP, PRP)

Рисунок 1.4. Модификации ЭНИП-2-...-А2Е4х2...

Модификации ЭНИП-2-...-A2E4x2-X1 (ЭНИП-2-...-A2E4x2FX-X1) отличаются наличием двух портов Ethernet, которые работают как встроенный коммутатор с поддержкой протоколов резервирования RSTP и PRP.

Полная спецификация кода заказа, учитывающая все возможные модификации ЭНИП-2-...-X1, приведена на следующей странице.

```
Номинальное напряжение
                                               Напряжение питания
100 - 57.7 (100) B
                                               220 - 100...265 В~ или 120...370 В=
400 - 230 (400) B
                                               110 - 40...160 В= (без поверки)
690 - 400 (690) B
                                               24 - 18...36 B=
Номинальный ток
                                               Рабочее напряжение дискретных входов
                                               (220) - 220 B=
41 - 1 A
45 - 5 A
                                               не указано - 24 В=
ЭНИП-2-
Интерфейсы, дискретные входы/выходы
A1E0
          -01 - 1 \times RS-485
A2E0
          -01 - 2 \times RS-485
A2E0
          - 11 - 2 × RS-485, 4 DI 3 DO
A2E0
          -21 - 2 \times RS-485, 8 DI
          -41 - 2 \times RS-485, 4 AO
A2E0
A3E4
          - 11 – 3 × RS-485, 1 × Ethernet 100Base-TX, 4 DI 3 DO
A3E4
          - 21 - 3 × RS-485, 1 × Ethernet 100Base-TX, 8 DI
A3E4
          - 41 - 2 × RS-485, 1 × Ethernet 100Base-TX, 4 AO
A2E4x2 -11 - 2 \times RS-485, 2 × Ethernet 100Base-TX, 4 DI 3 DO
A2E4x2 -21 - 2 \times RS-485, 2 × Ethernet 100Base-TX, 8 DI
A2E4x2 -41 - 2 \times RS-485, 2 × Ethernet 100Base-TX, 4 AO
A2SFP
          - 11 – 2 × RS-485, 1 × 1000M SC GPON, 4 DI 3 DO
A2SFP
          - 21 - 2 × RS-485, 1 × 1000M SC GPON, 8 DI
A2SFP -41 - 2 \times RS-485, 1 \times 1000M SC GPON, 4 AO
A2E4x2FX - 11 - 2 × RS-485, 2 × Ethernet 100Base-FX, 4 DI 3 DO
A2E4x2FX - 21 - 2 × RS-485, 2 × Ethernet 100Base-FX, 8 DI
A2E4x2FX-41-2 \times RS-485, 2 × Ethernet 100Base-FX, 4 AO
```

1.3 ЭНИП-2 Компакт

Условное обозначение: ЭНИП-2-...-32.

Преобразователь выполнен в металлическом корпусе, предусматривающем крепление на DIN-рельс (обозначение для заказа: DIN-KP), либо на специальный кронштейн (обозначение для заказа: RM6-KP).

Базовая модификация

Рисунок 1.5. Модификация ЭНИП-2-...-А2Е0-32

Измерительные преобразователи базовой модификации ЭНИП-2-...-32 имеют клеммы для подключения измерительных цепей напряжения, контроля напряжения, трансформаторы для токовых цепей, 12 дискретных входов, 3 релейных выхода, 2 интерфейса RS-485. Напряжение питания преобразователей 18...36 В=.


Индикаторы L1, L2, L3 на лицевой панели отвечают за работу уставок, настроенных на повышение/понижение напряжения на входах L1, L2, L3. Индикатор горит зелёным – уставка включена, мигает зелёным – срабатывание по понижению напряжения, мигает красным – срабатывание по превышению напряжения. Настройка порогов срабатывания осуществляется посредством ПО «ES конфигуратор» в разделе Дискретные сигналы.

Минимальная модификация

Рисунок 1.6. Модификация ЭНИП-2-...-А2Е0-32

Минимальная модификация отличается от базовой отсутствием входов для измерения напряжения и позволяет измерять ток только по одной фазе.

1.4 ЭНИП-2 УСВИ (РМU)

Условное обозначение: ЭНИП-2-...-Х3.

Преобразователь ЭНИП-2 выполнен в литом корпусе из пластмассы, не поддерживающей горение.

Модификация с аналоговыми измерительными входами

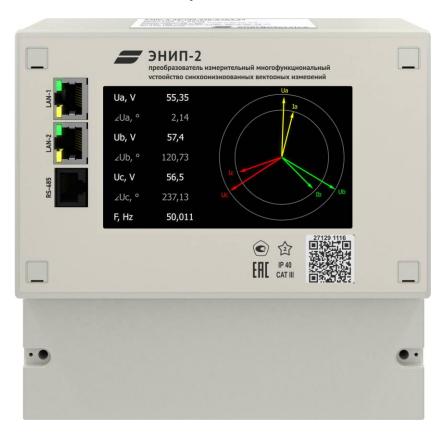


Рисунок 1.7. Модификация ЭНИП-2-...-А1Е4-13-РТР

Измерительные преобразователи модификации ЭНИП-2-...-X3 имеют три канала измерений тока (Ia, Ib, Ic), три канала напряжения относительно общей точки (Ua, Ub, Uc, Un), 5 дискретных входов, 1 порт Ethernet, а также опционально дополнительный порт Ethernet с поддержкой протокола PTPv2, сенсорную панель для отображения измерений и ГЛОНАСС/GPS-приёмник для синхронизации времени.

Модификация с поддержкой МЭК 61850-9-2

Рисунок 1.8. Модификация ЭНИП-2-0-...-А1Е4-23

Измерительные преобразователи модификации ЭНИП-2-0-...-X3 не имеют аналоговых входов и подключаются в шину процесса согласно МЭК 61850-9-2 (частота выборки: 80 точек на период промышленной частоты). Эти модификации имеют 5 дискретных входов, 3 дискретных выхода, 2 порта Ethernet, а также опционально сенсорную панель и ГЛОНАСС/GPS-приёмник.

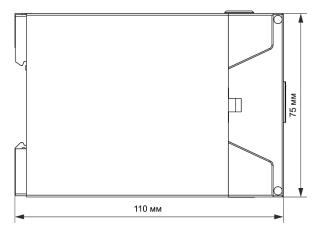
А1E4-13 — ... + цветной сенсорный экран А1E4-23 — ... + встроенный приемник ГЛОНАСС/GPS

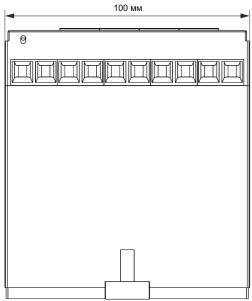
Пример записи обозначения преобразователя ЭНИП-2:

• с номинальным входным током 5 A, номинальным входным напряжением 57,7(100) B, напряжением питания 100...265 B~, 45...55 Гц или 120...370 B=, с одним интерфейсом RS-485, при его заказе и в документации другой продукции, в которой он может быть применен:

«Преобразователь измерительный многофункциональный ЭНИП-2-45/100-220-A1E0-01 ТУ 4221-892-53329198-07»;

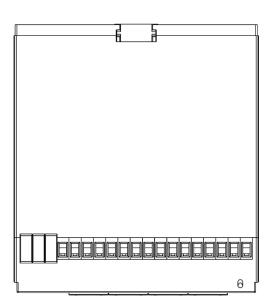
• с номинальным входным током 5 A, номинальным входным напряжением 230(400) B, напряжением питания 18...36 B=, с тремя интерфейсами RS-485, интерфейсом Ethernet, с 8 дискретными входами, при его заказе и в документации другой продукции, в которой он может быть применен:

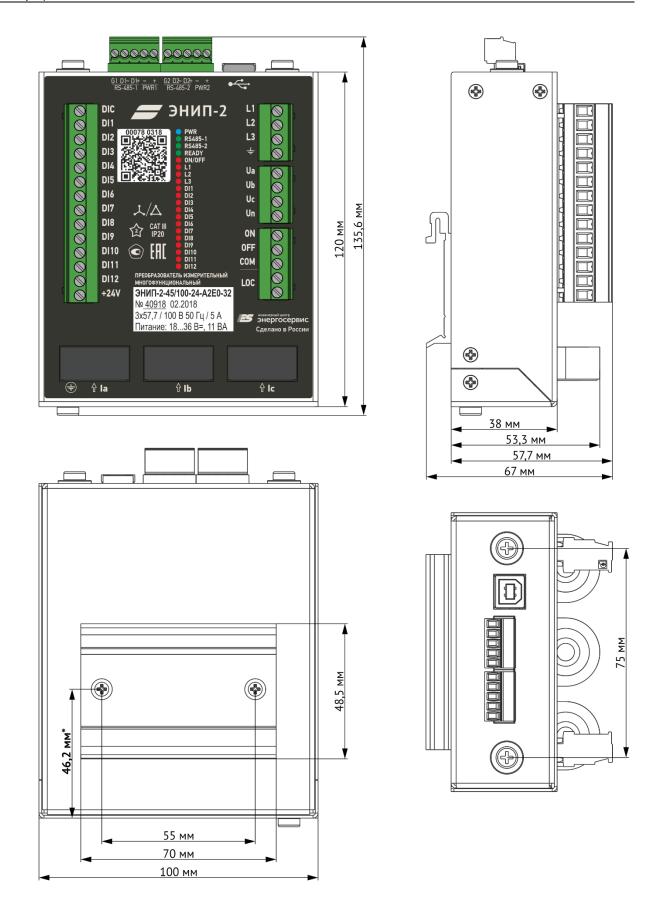

«Преобразователь измерительный многофункциональный ЭНИП-2-45/400-24-A3E4-21 ТУ 4221-892-53329198-07».


1.5 Конструкция и габаритные размеры

• ЭНИП-2-...-X1

Габаритные размеры преобразователя ЭНИП-2-...-Х1 приведены на рисунке 1.9.




Рисунок 1.9. Габаритные размеры преобразователя ЭНИП-2-...-X1 (лицевая панель модификации ЭНИП-2-45/100-24-A3E4-21)

• ЭНИП-2-...-32

Габаритные размеры преобразователя ЭНИП-2-...-32 с креплением DIN-KP приведены на рисунке - для устройств, выпущенных до июля 2021, размер 51,6 мм.

Рисунок 1.10.

Крепление DIN-KP монтируется на корпусе преобразователя ЭНИП-2-...-32 с помощью двух винтов M3x5 мм (потай).

* - для устройств, выпущенных до июля 2021, размер 51,6 мм.

Рисунок 1.10. Габаритные размеры преобразователя ЭНИП-2-...-32.

В комплект поставки преобразователя ЭНИП-2-...-32 может входить специальный металлический кронштейн RM6-KP, предназначенный для установки преобразователя в KPУЭ RM6 (Schneider Electric).

Преобразователь ЭНИП-2-...-32 закрепляется на кронштейне с помощью 3 винтов М4х6 мм (п/сф), как показано на рисунке 1.11.

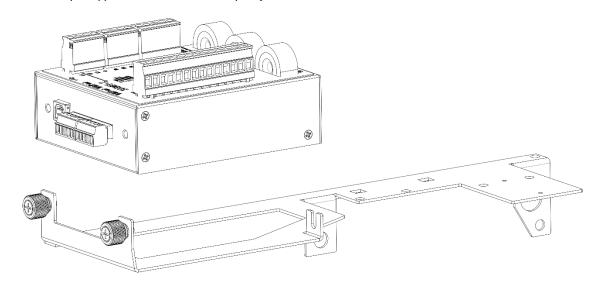


Рисунок 1.11. Способ установки преобразователя ЭНИП-2-...-32 на кронштейн RM6-KP

Габаритные размеры кронштейна RM6-КР представлены на рисунке 1.12.

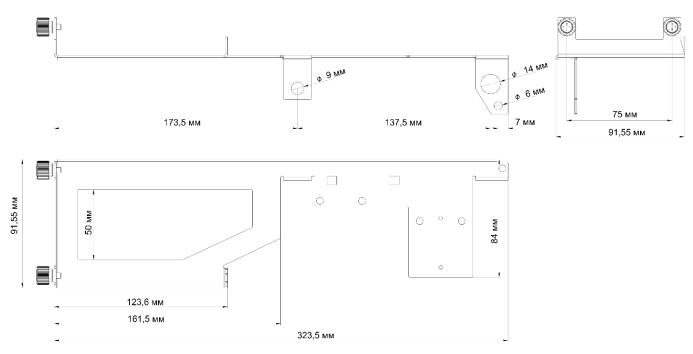


Рисунок 1.12. Габаритные размеры кронштейна RM6-KP

• ЭНИП-2-...-X3

Габаритные размеры преобразователя ЭНИП-2-...-ХЗ приведены на рисунке 1.13.

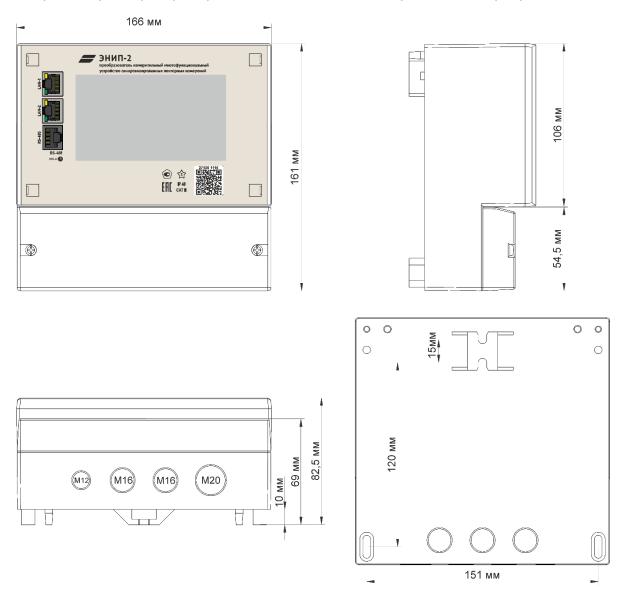


Рисунок 1.13. Габаритные размеры преобразователя ЭНИП-2-...-X3 (лицевая панель модификации ЭНИП-2-45/100-220-A1E4-13-PTP)

Под крышкой располагаются винтовые клеммы для подключения измерительных цепей, дискретных сигналов и цепей питания (см. рис. 1.14, 1.15).

Рисунок 1.14. Расположение клемм ЭНИП-2-...-Х3

Рисунок 1.15. Расположение клемм и интерфейсов ЭНИП-2-0-...-ХЗ

2 Технические характеристики

2.1 Входы тока и напряжения

2.1.1 Номинальные значения входных токов и напряжений, измеряемых мощностей приведены в таблице 2.1.

Таблица 2.1

	Номинальные значения				
Исполнение	напряже ние	напряжение линейное	ток фазы, I _н , A	мощность фазы,	мощность суммарная,
преобразователей ЭНИП-2	фазное,	(междуфазное),		Р _{н.Ф} , Вт	Рн, Вт
JHVIII-2	U _{н.Ф} , В	U _{н.л.} , В		Q _{н.Ф} , вар	Q _н , вар
				S _{H.Ф} , BA	S _H , BA
ЭНИП-2-41/100	57,7	100	1	57,7	173,1
ЭНИП-2-45/100	57,7	100	5	288,5	865,5
ЭНИП-2-41/400	230	400	1	230	690
ЭНИП-2-45/400	230	400	5	1150	3450
ЭНИП-2-41/690	400	690	1	400	1200
ЭНИП-2-45/690	400	690	5	2000	6000
ЭНИП-2-11/032	-	-	1	-	-
ЭНИП-2-15/032	-	-	5	-	-
ЭНИП-2-0*	57,7	100	5	288,5	865,5

^{*-} для ЭНИП-2 УСВИ с поддержкой приёма потока МЭК 61850 9-2 на входе первичные значения преобразуются до номинальных, и вся дальнейшая обработка происходит для этих значений.

Примечание: С января 2021 года модификация ЭНИП-2 с номинальным напряжением 380 В заменена на модификацию с номинальным напряжением 400 В. Прочие характеристики и схемы подключения данных модификаций совпадают.

- 2.1.2 Номинальное значение измеряемой частоты $f_{_{\rm H}}=50$ Гц. Номинальное значение коэффициента активной мощности $\cos \phi=1$, коэффициента реактивной мощности $\sin \phi=1$.
- 2.1.3 Полная мощность, потребляемая каждой последовательной цепью ЭНИП-2 при номинальном значении силы тока и номинальном значении частоты не более 0,1 ВА.
- 2.1.4 Полная мощность, потребляемая каждой параллельной цепью ЭНИП-2 при номинальном значении напряжения и номинальном значении частоты, не более 0,1 ВА. Входное сопротивление цепей напряжения не менее 4 МОм.

2.2 Измеряемые параметры

Для модификаций ЭНИП-2-...-Х1, ЭНИП-2-...-32

2.2.1 ЭНИП-2 обеспечивают измерение и передачу по интерфейсам последовательной связи:

- RMS параметров режима электрической сети:
- среднеквадратические значения переменного тока и напряжения, активной, реактивной и полной мощностей, энергии активной и реактивной в прямом и обратном направлениях;
- параметров режима электрической сети на основе токов и напряжений основной частоты:
- действующие значения переменного тока, напряжение, активной, реактивной и полной мощностей;
- частоты сети;
- коэффициентов мощности соѕ φ (tg φ; φ) (пофазно и среднего);
- отдельных параметров качества электроэнергии напряжение нулевой последовательности (U₀), напряжение прямой последовательности (U₁), напряжение обратной последовательности (U₂), коэффициент несимметрии напряжений по обратной последовательности (К_{2U}), коэффициент искажения синусоидальности кривой напряжения (K_U), ток нулевой последовательности (I₀), ток прямой последовательности (I₁), ток обратной последовательности (I₂), коэффициент несимметрии токов (К_{2I}), коэффициент искажения синусоидальности кривой тока (К_I), коэффициент гармонических искажений (THD).
- 2.2.2 ЭНИП-2 обеспечивают передачу измеряемых и вычисляемых параметров в соответствии с таблицей 2.2 по цифровым интерфейсам RS-485 (до 3 шт.) и Ethernet 100Base-TX (до 4 клиентов).

Таблица 2.2

Параметр	Обозначе ние	3-х проводная схема	4-х проводная схема
	U _A	-	+
Действующее значение фазного напряжения	U_B	-	+
	Uc	-	+
Среднее действующее значение фазного напряжения	$U_{cp.\varphi.}$	-	+
	U_{AB}	+	+
Действующее значение междуфазного напряжения	U_{BC}	+	+
	U _{CA}	+	+
Среднее действующее значение междуфазного напряжения	U _{ср.л.}	+	+
	I _A	+	+
Действующее значение фазного тока	I _B	+	+
	Ic	+	+
Среднее действующее значение фазного тока	I _{cp}	+	+
Актириза монность фазы изгрузки	P _A	-	+
Активная мощность фазы нагрузки	P_B	-	+

Параметр	Обозначе ние	3-х проводная схема	4-х проводная схема
	P _C	-	+
Суммарная активная мощность	Р	+	+
Реактивная мощность фазы нагрузки	Q _A Q _B Q _C	- - -	+ + + +
Суммарная реактивная мощность	Q	+	+
Полная мощность фазы нагрузки	S _A S _B S _C	- - -	+ + + +
Суммарная полная мощность	S	+	+
Частота сети	F	+	+
Активная энергия	Wh	+	+
Реактивная энергия	Varh	+	+
ф фаза А	cos/tg/φ _A	-	+
Ф фаза В	cos/tg/φ _B	-	+
Ф фаза С	cos/tg/φ _c	-	+
Ф общий	cos/tg/φ	+	+
Напряжение нулевой последовательности	U ₀	-	+
Напряжение прямой последовательности	U_1	-	+
Напряжение обратной последовательности	U_2	-	+
Коэффициент несимметрии напряжений по обратной последовательности $K_{2U} = \frac{U_2}{U_1}$	K _{2U}	-	+
Коэффициент искажения синусоидальности кривой напряжения $K_U = \frac{\sqrt{U^2 - {U_1}_h}^2}{U_1h}$	Κ _υ	-	+
Ток нулевой последовательности	I ₀	-	+
Ток прямой последовательности	l ₁	-	+
Ток обратной последовательности	l ₂	-	+
Активная мощность нулевой последовательности	P ₀	-	+
Реактивная мощность нулевой последовательности	Q_0	-	+
Коэффициент несимметрии токов по обратной последовательности $K_{2l} = \frac{I_2}{I_1}$	K ₂₁	-	+
Коэффициент искажения синусоидальности кривой тока $K_l = \frac{\sqrt{I^2 - I_1 h^2}}{I_1 h}$	Kı	-	+
Коэффициент гармонических искажений THD=(P- P_1)/ P_1	THD	-	+

Примечания:

- 1. знак «+» или «-» обозначает измеряется или не измеряется данный параметр для указанной схемы подключения;
- 2. значения токов, напряжений и мощностей также вычисляются и по основной гармонике;
- 3. под средним действующим значением фазного тока (фазного и междуфазного напряжений) понимается среднеарифметическое значение суммы действующих значений фазных токов (фазных и междуфазных напряжений).
- 2.2.3 Схема подключения к измерительным цепям универсальная: трех- или четырехпроводная, задается с помощью программного обеспечения «ES Конфигуратор».

2.2.4 При необходимости имеется возможность включить функцию отсечения малых значений, в этом случае значения токов и напряжений ниже порога будут передаваться нулевыми. Параметры порогов обнуления вторичных значений по умолчанию указаны в табл. 2.3.

Таблица 2.3

Tability 210					
Параметр	Номинальное значение	Порог при превышении	Порог при снижении		
Фотпо	57,7 B	1 B	0,5 B		
Фазное	230 B	4 B	2 B		
напряжение	400 B	8 B	4 B		
П .	100 B	1,73 B	0,87 B		
Линейное	400 B	6,93 B	3,46 B		
напряжение	690 B	13,86 B	17,32 B		
Tou	1 A	8 мА	4 mA		
Ток	5 A	40 мА	20 мА		

Когда значение измеряемой величины было 0, ненулевое значение придёт только после того, как измеренное значение превысит значение порога превышения. Когда значение измеряемой величины было не нулевым, 0 придёт только после того, как измеренное значение станет меньше значения порога при снижении.

При настройке прибора задаётся порог при превышении и гистерезис (порог при снижении равен разности этих параметров).

- 2.2.5 Для всех модификаций доступна программная инверсия направления тока по каждой из трёх фаз.
- 2.2.6 ЭНИП-2 обеспечивают обработку и передачу аналоговых параметров значений температуры, полученных от внешнего устройства измерения температуры «Зной».

Для модификаций ЭНИП-2-...-Х3

- 2.2.7 Модификации ЭНИП-2-...-X3 выполняют функции устройств синхронизированных векторных измерений и осуществляют измерения:
 - значений модулей синхронизированных векторов фазных напряжений;
 - значений модулей синхронизированных векторов фазных токов;
 - значений абсолютного угла синхронизированных векторов фазных напряжений;
 - значений абсолютного угла синхронизированных векторов фазных токов (определение абсолютного угла в соответствии со стандартом IEEE C37.118-2011);
 - частоты пофазно;
 - основной частоты;

• скорости изменения частоты и др.

Частота передачи результатов измерений до 100 значений в секунду. Метка времени присваивается каждому измерению.

2.2.8 ЭНИП-2-...-X3 обеспечивают передачу измеряемых и вычисляемых параметров в соответствии с таблицей 2.4 по цифровому интерфейсу Ethernet 100Base-TX.

Таблица 2.4

Параметр	Обозначение	Phasor	RMS
	U _A	+	+
Действующее значение фазного напряжения	U _B	+	+
	U _C	+	+
	U_{AB}	-	+
Действующее значение междуфазного напряжения	U_{BC}	-	+
	U_{CA}	-	+
	I _A	+	+
Действующее значение фазного тока	I _B	+	+
	Ic	+	+
	P _A	-	+
Активная мощность фазы нагрузки	P_B	-	+
	Pc	-	+
Суммарная активная мощность	Р	-	+
	Q_A	-	+
Реактивная мощность фазы нагрузки	Q_B	-	+
	Q_{C}	-	+
Суммарная реактивная мощность	Q	-	+
	S _A	-	+
Полная мощность фазы нагрузки	S _B	-	+
	S _C	-	+
Суммарная полная мощность	S	-	+
	COSφ _A	-	+
Косинус ф	COSφ _B	-	+
	COSφ _C	-	+
Основная частота	F	-	+
Частота фазы А	Fa	-	+
Частота фазы В	Fb	-	+
Частота фазы С	Fc	-	+
Скорость изменения основной частоты	dF	-	+
Скорость изменения частоты фазы А	dFa	-	+
Скорость изменения частоты фазы В	dFb	-	+
Скорость изменения частоты фазы С	dFc	-	+
Напряжение нулевой последовательности	U ₀	+	-
Напряжение прямой последовательности	U_1	+	-
Напряжение обратной последовательности	U ₂	+	-
Ток нулевой последовательности	I ₀	+	-
Ток прямой последовательности	l ₁	+	-
Ток обратной последовательности	l ₂	+	-

Примечания:

- 1. Phasor значения, вычисляемые по основной гармонике и передающиеся в векторном виде;
- 2. RMS значения, вычисляемые по всем гармоникам и передающиеся в аналоговом виде;
- 3. Знак «+» или «-» обозначает доступен или не доступен данный параметр в соответствующем виде.

- 2.2.9 ЭНИП-2-0-...-X3 поддерживает прием 1 или 2 потоков МЭК 61850-9-2 с частотой выборок 80 точек за период. При приеме двух потоков из одного используются значения токов, из другого напряжений.
- 2.2.10 Схема подключения к измерительным цепям четырехпроводная.
- 2.2.11 Для модификаций ЭНИП-2-...-X3 доступна программная инверсия направления тока и напряжения по каждой из трёх фаз.

2.3 Условия эксплуатации

2.3.1 Рабочие условия применения ЭНИП-2 приведены в таблице 2.5.

Таблица 2.5

Taoni	таолица 2.3					
Nº	Параметр	Значение				
1.	Температура окружающего воздуха, °С	-40+70 ¹⁾				
2.	Относительная влажность воздуха при температуре +35 °C, %	до 95				
3	Атмосферное давление, кПа (мм рт. ст.)	65106,7 (487,5800)				
4.	Частота входного сигнала, Гц	50±5				
5.	Ток, % от номинального значения	1÷200 (2÷200; 8÷800) ²⁾				
6.	Входное напряжение, % от номинального значения	5÷150				
7.	Коэффициент активной мощности соs φ	±(010)				
8.	Коэффициент реактивной мощности sin φ	±(010)				
9.	Коэффициент искажения синусоидальности входного напряжения, %	до 100				
10.	Коэффициент искажения синусоидальности входного тока, %	до 100				
11.	Диапазон высших гармонических составляющих входного сигнала,	от 2 до 19 ³⁾				
	при которых сохраняются установленные значения метрологических					
	характеристик					

Примечания:

- 2.3.2 Режим работы преобразователей ЭНИП-2 непрерывный. Продолжительность непрерывной работы неограниченная.
- 2.3.3 Время готовности к работе при включении питания для ЭНИП-2-...-X1 и ЭНИП-2-...-32 10 сек, для ЭНИП-2-...-X3 не более 1 мин.
- 2.3.4 Время установления рабочего режима (предварительного прогрева) не более 10 мин.
- 2.3.5 Нормальные условия применения приведены в таблице 2.6:

Таблица 2.6

Nº	Влияющая величина	Значение
1.	Температура окружающего воздуха, °С	+1525
2.	Относительная влажность воздуха, %	до 95
3.	Атмосферное давление, кПа (мм рт. ст.)	65106,7 (487,5800)

¹⁾ для модификаций с LCD-дисплеем (ЭНИП-2-...-13, ЭНИП-2-...-23) температура окружающего воздуха -20...+70°C;

 $^{^{2)}}$ назначение диапазонов 2÷200; 8÷800 приведено в п. 3.1 настоящего руководства;

³⁾ для модификаций ЭНИП-2-...-X1, ЭНИП-2-...-32.

- 2.3.6 Преобразователь ЭНИП-2 сейсмостойкий при установке на конструкции при воздействии землетрясения интенсивностью не более 9 баллов по MSK-64.
- 2.3.7 Максимальная высота над уровнем моря для эксплуатации преобразователей ЭНИП-2 3500 метров.
- 2.3.8 Норма средней наработки на отказ преобразователей ЭНИП-2 в нормальных условиях применения составляет 100000 ч.
- 2.3.9 Полный средний срок службы преобразователей ЭНИП-2 составляет 20 лет. Среднее время восстановления работоспособного состояния преобразователей ЭНИП-2 не более 1 ч.
- 2.3.10 ЭНИП-2 соответствуют требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования, ТР ТС 020/2011 «Электромагнитная совместимость технических средств» (декларация о соответствии ЕАЭС N RU Д-RU.HB26.B.01230/20 от 20.04.2020).
- 2.3.11 Преобразователи ЭНИП-2 зарегистрированы в Государственном реестре средств измерений за № 56174-14. Свидетельство об утверждении типа средств измерений ОС.С.34.001.А №53757/2 от 26.12.2018.
- 2.3.12 По требованиям безопасности преобразователи ЭНИП-2 соответствуют ГОСТ 12.2.091-2012.
- 2.3.13 Степень защиты IP40 для модификаций ЭНИП-2-...-X1, ЭНИП-2-...-X3 и IP20 для модификации ЭНИП-2-...-32 по ГОСТ 14254-2015. Преобразователи ЭНИП-2 должны устанавливаться в шкафах телемеханики: в шкафах со степенью защиты до IP54 без дополнительной вентиляции, в шкафах со степенью защиты после IP54 с дополнительной вентиляцией.
- 2.3.14 ЭНИП-2 являются многофункциональными, восстанавливаемыми, ремонтируемыми изделиями и предназначены для круглосуточной эксплуатации в стационарных условиях в производственных помещениях.

2.4 Метрологические характеристики

2.4.1 Метрологические характеристики преобразователей ЭНИП-2 указаны в таблице 2.7.

Таблица 2.7

140771144 2.7	
Наименование характеристик	Значение
Номинальные значения фазного (линейного) напряжения, В ⁴⁾	57,7 (100); 220 (380); 230 (400); 400 (690) ¹⁾ в зависимости от исполнения
Диапазон измерений напряжения, $\%$ от $U_{\scriptscriptstyle{HoM}}$	от 5 до 150 включ. ¹⁾

Наименование характеристик	Значение
Пределы допускаемой основной погрешности измерений среднеквадратического значения фазного (линейного) напряжения, % 5)	приведенная погрешность $\pm 0,2$ относительная погрешность $\pm 0,2$ при $0,2U_{\text{HOM}} \leq U \leq 1,5U_{\text{HOM}}^{-1}$ $\pm 0,75$ при $0,05U_{\text{HOM}} \leq U < 0,2U_{\text{HOM}}$
Номинальные значения силы переменного тока, A ⁴⁾	1; 5 в зависимости от исполнения
Диапазон измерений силы переменного тока, $\%$ от $I_{\scriptscriptstyle{HOM}}$	от 1 до 200 включительно
Пределы допускаемой основной погрешности измерений среднеквадратического значения силы переменного тока, % ⁶⁾	приведенная погрешность $\pm 0,2$ относительная погрешность $\pm 0,2$ при $0,2I_{\text{HOM}} \leq I \leq 2I_{\text{HOM}}$ $\pm 0,75$ при $0,05I_{\text{HOM}} \leq I < 0,2I_{\text{HOM}}$ ± 2 при $0,01I_{\text{HOM}} \leq I < 0,05I_{\text{HOM}}$
Номинальное значение измеряемой частоты, Гц	50
Диапазон измерений частоты, Гц	от 45 до 55
Пределы допускаемой основной абсолютной погрешности измерений частоты, Гц	±0,01 ²⁾
Номинальное значение коэффициента мощности <i>соѕφ</i>	±1
Диапазон измерений коэффициента мощности <i>соѕф</i>	от -1 до +1
Пределы допускаемой основной абсолютной погрешности измерений коэффициента мощности (пофазно и средний) $cos\phi$	±0,01
Пределы допускаемой основной погрешности измерений фазной и трехфазной активной (реактивной) мощности, %	приведенная погрешность ± 0.5 относительная погрешность ± 0.5 при $0.2I_{\text{HoM}} \le I \le 2I_{\text{HoM}},$ $0.2U_{\text{HoM}} \le U \le 1.5U_{\text{HoM}}^{-1},$ $0.8 \le cos\varphi \le 1$ $(0.8 \le sin\varphi \le 1)$
Пределы допускаемой основной погрешности измерений фазной и трехфазной полной мощности, %	приведенная погрешность $\pm 0,5$ относительная погрешность $\pm 0,5$ при $0,2I_{\text{HoM}} \leq I \leq 2I_{\text{HoM}},$ $0,2U_{\text{HoM}} \leq U \leq 1,5U_{\text{HoM}}^{1)}$
Диапазон измерений угла фазового сдвига между фазными напряжениями основной гармоники $^{3)}$	от -180° до +180°
Пределы допускаемой основной абсолютной погрешности измерений угла фазового сдвига между фазными напряжениями основной гармоники ³⁾	±0,1°

Примечания:

- ¹⁾ Для модификации ЭНИП-2-.../690-... диапазон измерений $0.05U_{\text{ном}} \le U \le 1.15U_{\text{ном}}$;
- $^{2)}$ Для модификаций ЭНИП-2-...-X3 пределы допускаемой основной абсолютной погрешности измерений частоты $\pm 0,001$ Гц;
- ³⁾ Только для модификации ЭНИП-2-...-X3;
- $^{4)}$ В модификации ЭНИП-2-0-...-X3 номинальные значения измеряемых входных сигналов тока и напряжения определяются потоком данных SV согласно IEC 61850-9-2, а также дополнительным программируемым масштабным коэффициентом для номинальных значений силы и напряжения электрического тока из диапазона: от 1 до 10^6 ;
- ⁵⁾ К среднеквадратическому значению напряжения относят среднеквадратическое значение напряжения основной частоты, среднеквадратическое значение напряжения с учетом всех спектральных составляющих входного сигнала;

2.4.2 Преобразователи ЭНИП-2-...-X1, ЭНИП-2-...-X2 соответствуют требованиям 2.4.1 при нормальных условиях применения, перечисленных в табл. 2.6. Время усреднения измеряемых параметров преобразователей 50 мс (в передаваемых параметрах это так называемые «быстрые измерения»). Дополнительно может быть настроено усреднение на периоде 200 (по умолчанию), 500, 1000, 1500, 2000 мс («усредненные измерения»).

Минимальная длительность цикла измерения и опроса составляет не более 65 мс, при этом длительность цикла зависит от выбранного периода усреднения измеряемых параметров.

2.4.3 Пределы дополнительной погрешности измерений, вызванных воздействием влияющих величин, приведены в таблице 2.8.

Таблица 2.8

Влияющая величина	Значение влияющей величины	ей дополнительной	
		$\delta_{ ext{X1}}$ / $\gamma_{ ext{X1}}$, %	ΔX_1
Температура окружающего воздуха, °С	от -40 до +70		
измерение токов и напряжений в зависимости от модификаций:			
ЭНИП-2X1		±0,025/5 °C	-
ЭНИП-232, ЭНИП-2Х3		±0,05/5 °C	-
измерение мощности в зависимости от модификаций:			
ЭНИП-2X1		±0,05/5 °C	-
ЭНИП-232, ЭНИП-2Х3		±0,1/5 °C	-
Внешнее однородное постоянное или переменное магнитное поле, синусоидально изменяющегося во времени с частотой, одинаковой с частотой тока,	0,5		
протекающего по измерительным цепям преобразователя, при самом неблагоприятном направлении и фазе магнитного поля, мТл			
измерение токов и напряжений		±0,1	-
измерение мощности		±0,25	-
измерение частоты в зависимости от модификаций:			
ЭНИП-2Х1, ЭНИП-232		-	±0,005 Гц
ЭНИП-2Х3		-	±0,0005 Гц
Коэффициент мощности $cos \varphi$ ($sin \varphi$)	±(от 0,5 до 0,8)		
измерение активной (реактивной) мощности		±0,4	

2.4.4 Межповерочный интервал – 8 лет.

⁶⁾ К среднеквадратическому значению силы переменного тока относят среднеквадратическое значение силы переменного тока основной частоты, среднеквадратическое значение силы переменного тока с учетом всех спектральных составляющих входного сигнала;

⁷⁾ При расчете приведенной погрешности в качестве нормирующего значения принимается номинальное значение измерения.

2.5 Дискретные входы

- 2.5.1 Общими для всех преобразователей являются следующие характеристики дискретных входов:
 - дискретные сигналы подаются на дискретный вход ЭНИП-2 напрямую, без использования дополнительных преобразователей;
 - дискретные входы срабатывают только при подаче напряжения прямой полярности. При подаче напряжения обратной полярности срабатывания дискретного входа и его повреждения не происходит;
 - униполярность дискретного входа предотвращает переключение дискретного входа при замыканиях на землю отрицательного полюса сети оперативного постоянного тока;
 - клеммы дискретных входов защищены от случайного закорачивания;
 - цепи телесигнализации разделены от частей изделия, доступных для пользователя;
 - по умолчанию дискретные входы настроены на защиту от помех длительностью менее 15 мс, вызванных дребезгом контактов (для выполнения данного условия дискретные входы сконфигурированы следующим образом: период выборки 5 мс, количество выборок 3).
- 2.5.2 **ЭНИП-2-...-X1** для ввода состояний дискретных сигналов имеет 4 или 8 дискретных входов (обозначаются на лицевой панели как DI), также доступна модификация без дискретных входов.

Таблица 2.9. Характеристики дискретных входов ЭНИП-2-...-Х1

Параметр	ЭНИП-2X1	ЭНИП-2X1 (220)
Тип входных сигналов	«Wet Contact», «Dry Contact»	«Wet Contact»
Номинальное напряжение, В=	24	220
Максимальное напряжение, В=	250	250
Порог срабатывания, В=	17,318,4	160170
Встроенный источник питания	24 B=	-
Максимальный ток	2 мА	2 мА
Защита от дребезга контактов	настраиваемая с определением периода выборки (1255 мс) и количества выборок (110) для точной фильтрации ложных срабатываний.	

Для подстанций единой национальной электрической сети (ПС ЕНЭС) рекомендуется использовать исполнение **ЭНИП-2-...-X1(220)**.

Распределение дискретных входов по клеммам:

для исполнения ЭНИП-2-...-11:

№ клеммы	Обозначение	Наименование
15	DI1	Дискретный вход 1
16	DI2	Дискретный вход 2
17	DI3	Дискретный вход 3
18	DI4	Дискретный вход 4
19	DIC	Общий вход
20	+24V	Питание для дискретных входов (минус питания соединен с DIC)

для исполнения ЭНИП-2-...-21:

№ клеммы	Обозначение	Наименование
11	DI1	Дискретный вход 1
12	DI2	Дискретный вход 2
13	DI3	Дискретный вход 3
14	DI4	Дискретный вход 4
15	DI5	Дискретный вход 5
16	DI6	Дискретный вход 6
17	DI7	Дискретный вход 7
18	DI8	Дискретный вход 8
19	DIC	Общий вход
20	+24V	Питание для дискретных входов (минус питания соединен с DIC)

2.5.3 **ЭНИП-2-...-32** для ввода состояний дискретных сигналов имеет 12 дискретных входов.

Таблица 2.10. Характеристики дискретных входов ЭНИП-2-...-32

Параметр	ЭНИП-232
Тип входных сигналов	«Wet Contact», «Dry Contact»
Номинальное напряжение, В=	24
Максимальное напряжение, В=	36
Порог срабатывания, В=	17,318,4
Встроенный источник питания	24 B=
Максимальный ток	5 mA
Защита от дребезга контактов	настраиваемая с определением периода выборки (1255 мс) и количества выборок (110) для точной фильтрации ложных срабатываний.

Распределение дискретных входов по клеммам:

Обозначение клеммы	Наименование
DIC	Общий вход
DI1	Дискретный вход 1
DI2	Дискретный вход 2
DI3	Дискретный вход 3
DI4	Дискретный вход 4

Обозначение клеммы	Наименование
DI5	Дискретный вход 5
DI6	Дискретный вход 6
DI7	Дискретный вход 7
DI8	Дискретный вход 8
DI9	Дискретный вход 9
DI10	Дискретный вход 10
DI11	Дискретный вход 11
DI12	Дискретный вход 12
24V	Питание для дискретных входов (минус питания соединен с DIC)

2.5.4 ЭНИП-2-...-ХЗ для ввода состояний дискретных сигналов имеет 5 дискретных входов;

Таблица 2.11. Характеристики дискретных входов ЭНИП-2-...-Х3

Параметр	ЭНИП-2Х3
Тип входных сигналов	«Dry Contact»
Номинальное напряжение, В=	24
Максимальное напряжение, В=	36
Порог срабатывания, В=	17,318,4
Встроенный источник питания	24 B=
Максимальный ток	5 mA

Распределение дискретных входов по клеммам:

Обозначение	Наименование
DIC	Общий вход
DI1	Дискретный вход 1
DI2	Дискретный вход 2
DI3	Дискретный вход 3
DI4	Дискретный вход 4
DI5	Дискретный вход 5

2.6 Дискретные выходы

2.6.1 **ЭНИП-2-...-21** обеспечивает управление коммутационными аппаратами или механизмами через внешние модули ввода/вывода ЭНМВ-1, подключаемые через разъем RS-485-2. К ЭНИП-2 может быть подключено по магистральной схеме до 4 модулей ЭНМВ-1.

Модули ввода-вывода ЭНМВ-1-X/3R имеют встроенные электромагнитные реле и позволяют подключать цепи телеуправления непосредственно в схему управления коммутируемого оборудования. Состояние встроенных реле контролируется микроконтроллером, обеспечивая защиту от ложных срабатываний.

Информационный обмен между ЭНИП-2 и модулями ввода-вывода осуществляется по проприетарному протоколу на основе Modbus RTU. ЭНИП-2 может обрабатывать до

- 32 дискретных сигналов. Для наилучшего быстродействия рекомендуется устанавливать максимально возможную скорость на порту: 115200 бод (38400/57600 при использовании ЭНМИ). Состояние выходов модулей ввода-вывода фиксируется в журнале дискретных сигналов ЭНИП-2 с фиксацией метки времени события.
- 2.6.2 **ЭНИП-2-...-11** обеспечивает управление коммутационными аппаратами или механизмами через внешние модули, подключаемые через разъем RS-485-2 (аналогично ЭНИП-2-...-21, количество внешних модулей до 4) и/или встроенные дискретные выходы, реализованные на базе электронных ключей.

Количество выходов – 3 шт.: DO1 - включение, DO2 - отключение, DO3 - контроль (срабатывает одновременно с включением или отключением; с версии hw 4.2 поддерживается независимое управление DO3);

Параметры встроенных дискретных выходов:

Таблица 2.12. Характеристики дискретных выходов ЭНИП-2-...-11

Параметр	ЭНИП-211
Тип дискретных выходов	SSR (электронный ключ)
Максимальное напряжение, В=	300
Максимальное напряжение, В~	250
Максимальный ток, мА	100
Постоянная времени, с	0,02
Коммутационная износостойкость	10000

Гальваническое разделение встроенных дискретных выходов устройства с внешними цепями осуществляется с помощью электронных ключей.

При необходимости управлять токовой нагрузкой больше 100 мА, требуется использовать промежуточные реле.

2.6.3 **ЭНИП-2-...-32** обеспечивает управление коммутационными аппаратами или механизмами через внешние модули, подключаемые через разъем RS-485-2 (аналогично ЭНИП-2-...-21, количество внешних модулей до 4) и/или встроенные дискретные выходы реализованные на базе комбинации электромеханических реле и силовых электронных ключей.

Количество выходов – 3 шт.: ON - включение, OFF - отключение, LOC – блокировка АПВ/фиксация положения.

Дискретные выходы выполнены на базе последовательной цепи из электромеханического реле и силового электронного ключа. Это позволяет обеспечить надежность выполнения команд телеуправления, исключить ложное срабатывание, а также обеспечить коммутацию постоянного тока.

Параметры встроенных дискретных выходов:

Таблица 2.13. Характеристики дискретных выходов ЭНИП-2-...-32

Параметр	ЭНИП-232
Тип дискретных выходов	SSR + EMR
Максимальное напряжение, В=	250
Максимальное напряжение, В~	250
Максимальный ток, А=	9 (0,2 c) 6 (2 c) 5 (5 c) 1,3
Коммутационная износостойкость	10000

Схема соединения реле и ключей указана представлена справа. Коммутация происходит в два этапа: при включении сначала включается реле (подготовка цепи ТУ – выбор команды – ОN или OFF), затем срабатывает электронный ключ (срабатывание), при размыкании все происходит в обратном порядке – электронный ключ первым разрывает ток, затем цепь размыкается реле. Цепь LOC работает аналогично. По умолчанию срабатывание LOC происходит одновременно с выполнением команды OFF.

2.6.4 **ЭНИП-2-0-...-X3 обеспечивает** управление коммутационными аппаратами или механизмами через встроенные дискретные выходы, реализованные на базе электромеханических реле.

Параметры встроенных дискретных выходов:

Таблица 2.14. Характеристики дискретных выходов ЭНИП-2-...-Х3

Параметр	ЭНИП-2X3
Тип дискретных выходов	EMR
Максимальное напряжение, В=	250
Максимальное напряжение, В~	250
Максимальный ток, А	6 A (250 B~) 3 A (30 B=) 0,35 A (110 B=) 0,2 A (220 B=)
Коммутационная износостойкость	10000

2.7 Аналоговые выходы

2.7.1 **ЭНИП-2-...-41** имеет возможность трансляции измеряемых и рассчитываемых параметров с помощью настраиваемых уровней аналоговых сигналов. Всего ЭНИП-2-...-41 имеет четыре аналоговых выхода АО1...АО4. На каждый выход может

быть задан свой диапазон аналоговых значений и тип параметра для трансляции значений.

Ниже приведен перечень доступных к настройке диапазонов:

Режимы работы аналоговых выходов ЭНИП-241							
-5 0 5 мА	0 2.5 5 мА	0 5 мА					
-20 0 20 мА	0 10 20 мА	0 20 мА					
-24 0 24 мА	0 12 24 мА	0 24 мА					
	4 12 20 мА	4 20 мА					

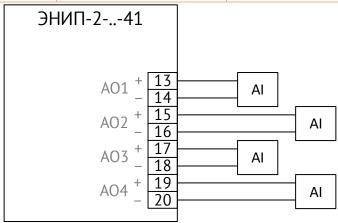


Рисунок 2.1. Схема подключения аналоговых выходов.

2.8 Питание

2.8.1 Для модификаций ЭНИП-2-X/X-**220**-XX:

Характеристики блока питания ЭНИП-2-X/X-220-XX приведены в таблице 2.15.

Таблица 2.15

Параметр	Значение
Диапазон входного напряжения переменного тока цепей питания	100265 В~, 4555 Гц
Диапазон входного напряжения постоянного тока цепей питания	120370 B=
Максимальное длительное рабочее напряжение	265 B~ или 370 B=
Временное перенапряжение (5 сек)	335 B~ или 390 B=

Вход питания ЭНИП-2-X/X-220-XX универсальный (может подаваться напряжение и переменного, и постоянного тока).

Вход питания ЭНИП-2-X/X-220-XX униполярный (устройство будет работать при подключении напряжения постоянного тока как прямой, так и обратной полярности).

Допустимый перерыв в питании с сохранением работоспособности прибора не более 300 мс.

2.8.2 Для модификаций ЭНИП-2-X/X-**24**-XX:

Характеристики блока питания ЭНИП-2-Х/Х-24-ХХ приведены в таблице 2.16.

Таблица 2.16

Параметр	Значение
Диапазон входного напряжения постоянного тока цепей питания	1836 B=
Максимальное длительное рабочее напряжение	36 B=
Временное перенапряжение (5 сек)	40 B=

На вход питания ЭНИП-2-X/X-24-XX следует подавать напряжение только прямой полярности. Данные модификации имеют защиту от подключения неправильной полярности (устройство не включится).

2.8.3 Для модификаций ЭНИП-2-X/X-**110**-XX:

Характеристики блока питания ЭНИП-2-X/X-24-XX приведены в таблице 2.17.

Таблица 2.17

Параметр	Значение
Диапазон входного напряжения постоянного тока цепей питания	40160 B=
Максимальное длительное рабочее напряжение	160 B=
Временное перенапряжение (5 сек)	200 B=

На вход питания ЭНИП-2-X/X-110-XX следует подавать напряжение только прямой полярности. Данные модификации имеют защиту от подключения неправильной полярности (устройство не включится).

- 2.8.4 ЭНИП-2 обеспечивает нормальную работу при произвольном изменении напряжения питания в пределах рабочего диапазона.
- 2.8.5 Выставление напряжения питания ниже предела рабочего диапазона не приводит к выдаче ложных команд преобразователем ЭНИП-2.
- 2.8.6 Потребляемая мощность по цепи питания:
 - для исполнений ЭНИП-2-...-X1 не более 11 ВА;
 - для исполнений ЭНИП-2-...-X1 при питании через ЭНИП-2 модуля индикации не более 19 ВА;
 - для исполнений ЭНИП-2-...-32 не более 11 Вт;
 - для исполнений ЭНИП-2-...-ХЗ не более 13 ВА.
- 2.8.7 Пусковой ток всех модификаций ЭНИП-2 не превышает 16 А в течение 1 мкс. Рекомендации по выбору номинального тока автоматического выключателя приведены в табл. 2.18.

Таблица 2.18. Номинальный ток автоматического выключателя для ЭНИП-2

Количество преобра	Номинальное значение автоматического				
ЭНИП-2-X/X-220-X-X1	выключателя*, А				
1-2	1-2	1			
3-5	3-4	2			
6-8	5-6	3			
9-10	7-8	4			
11-20	9-12	6			
20-25	13-21	10			

Примечание: Значения приведены для автоматических выключателей Schneider Electric iC60N характеристика «С».

2.8.8 Обозначение клемм питания ЭНИП-2 представлено ниже:

Наименование цепи питания	ЭНИП-2-4X/X-220-XX-X1 ЭНИП-2-4X/X-220-XX-X3	ЭНИП-2-4X/X-24-XX-X1 ЭНИП-2-4X/X-24-XX-X3		
Тип напряжения	сеть переменного тока напряжением 100265 В~, 4555 Гц или постоянного напряжения 120370 В=	сеть постоянного напряжения 1836 B=		
⊕ N/−	защитное заземление (РЕ)	защитное заземление (РЕ)		
N/- нейтраль (N) или отрицательная цепь питан		отрицательная цепь питания		
L/+	фаза (L) или положительная цепь питания	положительная цепь питания		

Наименование	ЭНИП-2-XX/X-24-A2E0-32
цепи питания	сеть постоянного напряжения 1836 В=
(+)	защитное заземление (РЕ) (винт защитного заземления расположен на корпусе)
PWR1 -	отрицательная цепь входа питания №1
PWR1 +	положительная цепь входа питания №1
PWR2 -	отрицательная цепь входа питания №2
PWR2 +	положительная цепь входа питания №2

2.9 ЭМС и изоляция

2.9.1 Преобразователи ЭНИП-2 соответствуют требованиям 2.4.1 через 2 мин. после воздействия кратковременных перегрузок, указанных в табл. 2.19.

Таблица 2.19

Nº	Значение	Значение	Число	Длительность	Интервал между
	силы тока	напряжения	перегрузок	каждой перегрузки,	последовательными
				C	перегрузками, с
1	7·/ _{ном}	$U_{\scriptscriptstyle{HOM}}$	2	15	60
2	10-/ _{ном}	$U_{\scriptscriptstyle{HOM}}$	1	15	-
3	40-/ _{ном}	$U_{\scriptscriptstyle{HOM}}$	1	1	-
4	I _{ном}	2· <i>U</i> _{ном}	1	60	-

2.9.2 Требования ЭМС к портам преобразователя ЭНИП-2, регламентированные стандартами ГОСТ Р 51317.6.5-2006 (по классу соответствует: размещение H, соединение h) и СТО 56947007-29.240.044-2010, приведены в табл. 2.20.

Таблица 2.20

Nº	Методы и виды испытаний	ны воздействий на порты преобразователя ЭНИП-2							
					Ethern et	Корпус	Заземл		
1	ГОСТ 30804.4.11-2013	ь		-	-	-	-	-	-
	Провалы и прерывания								
	напряжения электропитания:								
	- провалы на 0,3Uном	20 мс	20 мс						
	a	Соотв. А							
	- провалы на 0,3Uном	1000 мс							
	- провалы на 0,5Uном	Соотв. А 100 мс	Соотв. А 100 мс						
	- провалы на о,эоном	Соотв. А							
	- провалы на 0,6Uном	1000 мс	1000 мс						
	F	Соотв. А							
	- прерывания напряжения	100 мс	100 мс						
		Соотв. А							
	- прерывания напряжения	1000 мс	1000 мс						
	50 ST D 51 T1 T 1 T 2000	Соотв. В	Соотв. В						
2	ГОСТ Р 51317.4.17-2000	10%	-	-	-	-	-	-	-
	Пульсации напряжения питания постоянного тока	10% Соотв. А							
3	ГОСТ Р 51317.4.16-2000	COUIB. A							
5	Низкочастотные кондуктивные								
	помехи	300 B	300 B	300 B	300 B	300 B	300 B	-	-
	Кратковременные 50 Гц	30 B	30 B	30 B	30 B	30 B	30 B		
	Длительные 50 Гц	Соотв. А							
4	ГОСТ Р 51317.4.5-99							-	-
	Микросекундные импульсные								
	помехи большой энергии								
	«Провод-провод»	4,0 кВ	4,0 кВ	4,0 кВ	4,0 кВ				
	«Провод-земля»	4,0 кВ	4,0 кВ	4,0 кВ	4,0 кВ	4,0 кВ (Э)	4,0 кВ (Э)		
		Соотв. А							
5	ГОСТ Р 30804.4.4-2013	4,0 кВ	4,0 кВ	4,0 кВ	4,0 кВ	4,0 κB (K)	4,0 кВ (K)	-	4,0 κB (K)
	Наносекундные импульсные			(УСР)	(УСР)				
	помехи	Соотв. А							
6	ГОСТ Р 51317.4.12-99								
	Затухающие импульсные помехи								
	Одиночные «Провод-провод»	2,0 кВ	2,0 кВ	2,0 кВ	2,0 кВ	-	-	-	-
	Одиночные «Провод-земля»	4,0 кВ	4,0 кВ	4,0 кВ	4,0 кВ	4,0 кВ (Э)	4,0 кВ(Э)		
	Повторяющиеся «Провод-провод»	1,0 кВ	1,0 kB	1,0 kB	1,0 kB	- 2.5. D.(2)	-		
	Повторяющиеся «Провод-земля»	2,5 κB	2,5 кВ	2,5 кВ	2,5 кВ	2,5 кВ (Э)	2,5 KB(J)		
		Соотв. А							
7	ГОСТ Р 51317.4.6-99	40.5	40.5	40.5	40.5	40.5 (2)	40.5.0		40.5
	Кондуктивные помехи в	10 B	10 B	10 B	10 B	10 В (Э)	10 В (Э)	-	10 B
	диапазоне от 0,15 до 80 МГц	Соотв. А							
8	ГОСТ Р 51317.4.14-2006	-		-	-	-	-	-	-
	Колебания напряжения в сети								
	электропитания перем. Тока - U _{н.} = 220 В		T/+-E/1-						
	- U _{H.} - ZZU D		T/t=5/1c, Соотв. А						
	- 0,9U _{н.} = 198 В		T/t=5/1c,						
	0,70n. 170 D		Соотв. А						
	- 1,1U _{н.} = 242 В		T/t=5/1c,						
			Соотв. А						
9	ГОСТ Р 51317.4.28-2000	-	± 15 %	-	-	-	-	-	-
	Изменение частоты сети		1 c						
	электропитания перем. тока		Соотв. А						
10	ГОСТ 30804.4.13-2013	-	Класс 3	-	-	-	-	-	-
	Искажение синусоидальности		± 25 %						
1.4	напряжения электропит-я		Соотв. А						
11	ГОСТ 30804.3.2-2013. Эмиссия	-	Класс А Соотв.	-	-	-	-	-	-
	гармонических составляющих тока в сеть электропитания		COOTE.						
	TONG D CCTD STICKTPOTHITATIVIS		l	l	L.	l .	1		1

Nº	Методы и виды испытаний	Величины воздействий на порты преобразователя ЭНИП-2							
		= 220	~ 220 B	DO, DI	Al	RS-485	Ethern	Корпус	Заземл
		В					et		
12	ГОСТ 30804.3.3-2013. Колебания напряжения и фликер, вызываемые в сети электропитания	-	PST<1, PLT<0,6 5 Cootb.	-	-	-	-	-	-
13	ГОСТ 30804.4.2-2013 Электростатические разряды (ЭСР) непосредственно на корпуса, с интервалами между импульсами 10 с «контактный разряд» «воздушный разряд»	-	-	-	-	-	-	6 кВ 8 кВ Соотв.А	-
14	ГОСТ Р 50648-94 Магнитные поля промышленной частоты (МППЧ) в трёх взаимно-перпендикулярных плоскостях длительно кратковременно 3 с	-	-	-	-	-	-	100 А/м 1000 А/м Соотв. А	-
15	ГОСТ Р 50649-94 Импульсные магнитные поля (ИМП) в трёх взаимно-перпендикулярных плоскостях	-	-	-	-	-	-	1000 А/м Соотв. А	-
16	ГОСТ 30804.4.3-2013 ¹⁾ Радиочастотное электромагнитное поле (РЧПП) (80-1000) МГц (800-960) МГц (1400-3000) МГц	-	-	-	-	-	-	10 В/м 10 В/м 10 В/м Соотв. А	-
17	ГОСТ Р 50652-94 Затухающее импульсное магнитное поле в трех взаимно-перпендикулярных плоскостях	-	-	-	-	-		100 А/м Соотв. А	
18	ГОСТ 30805.22-2013 Эмиссия индустриальных радиопомех в полосе частот от 0,15 до 30 МГц	Класс А Соотв.	Класс А Соотв.	-	-	-	-	-	-
	Эмиссия индустриальных радиопомех в полосе частот от 30 до 1000 МГц	-	-	-	-	-	-	Класс А Соотв.	-

Перечень обозначений:

- (К) помеха подается через электромагнитные клещи,
- (Э) помеха подается на экран кабеля,
- (УСР) устройство связи-развязки,
- DI, DO порт дискретных входов и выходов,
- AI порт аналоговых входов,
- =220В, ~220В порты питания постоянного и переменного тока

Примечания:

- 1) Во время воздействия помехи измеряемые аналоговые значения могут отличаться при следующих частотах: 95-245 МГц, 365-500 МГц.
- 2.9.3 Сопротивление изоляции между каждой независимой цепью (гальванически не связанной с другими цепями) и корпусом, соединенным со всеми остальными независимыми цепями, преобразователя ЭНИП-2 более 100 МОм при напряжении постоянного тока 500 В.
- 2.9.4 Электрическая прочность изоляции преобразователя ЭНИП-2 соответствует требованиям:

- электрическая изоляция между портом электропитания, измерительными цепями напряжения и тока, дискретными входами и выходами по отношению ко всем остальным независимым цепям и корпусу выдерживает без повреждений испытательное напряжение действующим значением 2,0 кВ частоты 50 Гц в течение 1 мин;
- электрическая изоляция между интерфейсными цепями RS-485, Ethernet по отношению ко всем остальным независимым цепям и корпусу выдерживает без повреждений испытательное напряжение действующим значением 0,5 кВ частоты 50 Гц в течение 1 мин.
- 2.9.5 Преобразователь ЭНИП-2 выдерживает испытание импульсным напряжением со следующими параметрами:
 - электрическая изоляция между портом электропитания, измерительными цепями напряжения и тока, дискретными входами и выходами по отношению ко всем остальным независимым цепям и корпусу выдерживает без повреждений импульсное напряжение 5,0 кВ;
 - электрическая изоляция между интерфейсными цепями RS-485, Ethernet по отношению ко всем остальным независимым цепям и корпусу выдерживает без повреждений импульсное напряжение 1,0 кВ.

3 Устройство и функциональные возможности

3.1 Принцип работы (на примере ЭНИП-2 Стандарт)

3.1.1 Структурная схема преобразователя ЭНИП-2 приведена на рисунке 3.1.

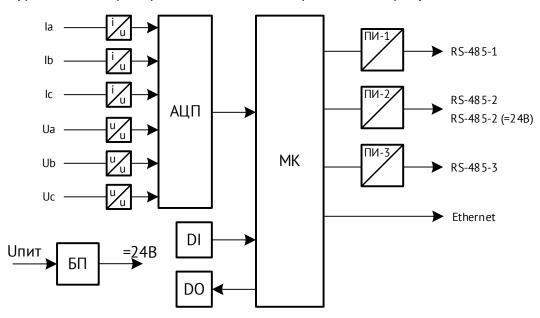


Рисунок 3.1. Структурная схема преобразователя ЭНИП-2-...-А3Е4-11

Входные токи и напряжения через схемы согласования поступают на вход АЦП, который производит аналого-цифровое преобразование мгновенных значений измеряемых сигналов (40 выборок за каждый период (20 мс) промышленной частоты 50 Гц) и передает данные на микроконтроллер (МК).

МК обеспечивает:

- вычисление параметров электрической сети (время обработки цифровыми фильтрами 40-50 мс, фильтры работают «скользящим окном») «быстрых» измерений;
- усреднение измеренных и вычисленных параметров (период усреднения выбирается при настройке из ряда 200/500/1000/1500/2000 мс, усреднение осуществляется «скользящим окном»);
- обработку состояний собственных и внешних дискретных входов/выходов;
- обмен данными с внешними системами по протоколам Modbus RTU, Modbus TCP, ГОСТ Р МЭК 60870-5-104-2004, ГОСТ Р МЭК 60870-5-101-2006, SNTP, SNMP, МЭК 61850-8.1 (для передачи измеренных и вычисленных параметров МК обновляет значения параметров каждые 20 мс).

С помощью преобразователей интерфейсов ПИ-1, ПИ-2, ПИ-3 реализованы гальванически развязанные интерфейсы RS-485. Встроенные возможности МК обеспечивают функционирование Ethernet порта. На базе МК реализована поддержка часов реального времени. Также имеется сторожевой таймер.

Серийный номер, служебная информация и калибровочные коэффициенты, устанавливаемые при заводской настройке, хранятся в энергонезависимой памяти. Настройки пользователя (конфигурация ЭНИП-2) также сохраняются в энергонезависимой области памяти.

ЭНИП-2 оснащен часами реального времени, методы синхронизации которых описаны в п. 3.6.

- 3.1.2 В ЭНИП-2 реализована возможность фиксации измеренных параметров на срезах астрономической секунды. С помощью ПО «ES Конфигуратор» на любом интерефейсе можно определить, какие именно данные необходимо передавать фиксированные, быстрые или усредненные. Также осуществляется выбор типа передаваемых значений масштабированных величин (integer) или значений с плавающей запятой (float). Период обновления «быстрых» и «усредненных» измерений в регистрах ЭНИП-2 составляет 20 мс.
- 3.1.3 Для различных схем подключения к измерительным цепям может быть применен один и тот же тип ЭНИП-2. Выбор используемой схемы подключения осуществляется в ПО ES Конфигуратор в настройке «Схема подключения» (3-проводная или 4-проводная).
- 3.1.4 Время доставки параметров при использовании протокола МЭК 60870-5-101 зависит от количество принимаемых параметров, их апертуры, формата передаваемых значений (INTEGER или FLOAT, с меткой времени или без). В любом случае использование МЭК 60870-5-101 для передачи телеметрии является предпочтительным и рекомендованным.

Пример: ЭНИП-2 с поддержкой ГОСТ Р МЭК 60870-5-101-2006 при скорости опроса 19200 бод и опросе по одной магистрали 32 преобразователей обеспечивает выдачу спорадически изменившегося значения телеизмерения с меткой времени 7 байт за время 0,14...0,17 с после соответствующего изменения параметра.

- 3.1.5 Для модификаций ЭНИП-2-...-X1, ЭНИП-2-...-32 предоставляется возможность настройки диапазона измерения тока. Доступен один из следующих вариантов:
 - Диапазон 1...200% от Ін (по умолчанию) обеспечивает измерение тока с погрешностью, не превышающей указанной в таблице 2.7. Для обеспечения

заданной точности измерительная область разбита на 2 диапазона. Граница между диапазонами установлена:

- 3,5 А для модификаций с I_н =5 А;
- 0,7 A для модификаций с I_{H} =1 A.

В связи с этим при переходе с одного диапазона на другой возможны задержки в выдаче результатов измерений на 200 мс, связанные с перенастройкой АЦП и цифровых фильтров микроконтроллера.

- Диапазон 2...200% от I_н используется для задач, в которых требуется производить измерения с высокой интенсивностью передачи результатов, например, в системах регулирования АСУ ТП. В данном режиме ЭНИП-2 выполняет измерения тока без деления измерительной области на 2 диапазона. В следствие этого нет задержек при выдаче результатов измерений от АЦП и цифровых фильтров микроконтроллера, однако сужается измерительный диапазон (не от 1%, а начиная с 2% от I_н).
- Диапазон 8...800% от Ін используется для регистрации токов аварийного режима.
 В этом режиме для малых значений тока точность прибора может резко отличатся от заявленной в таблице 1.5.

Примечание: Диапазон 8...800% от І_н недоступен для приборов с аппаратной версией 5.1 и выше, выпускаемых с сентября 2021.

Диапазоны измерения 2...200% и 8...800% от I_н - не являются рекомендованными в большинстве случаев применения ЭНИП-2.

3.2 Телесигнализация

Для модификаций ЭНИП-2-...-Х1, ЭНИП-2-...-32

Дискретные сигналы, доступные для передачи в виде ТС:

- Дискретный вход состояние встроенного или внешнего дискретного входа;
- Дискретный выход состояние встроенного, внешнего или виртуального дискретного выхода;
- Уставка факт срабатывание уставки по любому из параметров ЭНИП-2;
- Результат логического выражения состояние логического выражения;

- Подписка GOOSE состояние дискретного сигнала, полученного в GOOSEсообщении;
- Диагностика наличие ошибок прибора.

Максимальное количество объектов телесигнализации, формируемых одним преобразователем ЭНИП-2, составляет 32 сигнала.

При изменении состояний любого дискретного сигнала событие регистрируются, присваивается метка времени и зафиксированное состояние готово для передачи по портам RS-485, Ethernet. Точность присвоения метки времени - 1 мс.

ЭНИП-2 поддерживает передачу состояний дискретных сигналов в рамках протоколов:

- ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004 как в виде Single point (1 и 30 типы кадров), так и Double point (3 и 31 типы кадров). Для последнего случая обработка состояний идет попарно, начиная с нечетного: 1-2, 3-4, 5-6 и т. д. При настройке устройства для парных дискретных входов необходимо задать время переключения. Если двухпозиционных сигнал находится в неопределенном состоянии (00) меньше заданного времени, это состояние не будет передано по протоколам.
- Modbus RTU/TCP по командам 01, 02, 03, 04;
- МЭК 61850 8-1 в виде GOOSE, MMS (GGIO\$ST\$Ind, XCBR\$ST\$Pos, XSWI\$ST\$Pos);
- SNMP, только по запросу.

Для модификаций ЭНИП-2-...-Х3

Максимальное количество объектов телесигнализации, формируемых одним преобразователем ЭНИП-2 составляет 5 сигналов (8 при наличии дискретных выходов).

ЭНИП-2 поддерживает передачу состояний дискретных сигналов в рамках протоколов:

- ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004 в виде Single point (1, 30 типы кадров);
- Modbus RTU/TCP по команде 01, 02;
- С37.118.2 в виде дискретных данных.

3.3 Телеуправление

Для модификаций ЭНИП-2-...-Х1, ЭНИП-2-...-32

Телеуправления в ЭНИП-2 доступно для встроенных дискретных выходов (при наличии), внешних дискретных выходов (в модулях ЭНМВ-1), а также для виртуальных DO (дискретный сигнал, меняющий своё состояние по команде ТУ). Все выходы в ЭНИП-2 добавляются парами, первый срабатывает по команде ВКЛ, второй – ОТКЛ.

По умолчанию два выхода из одной пары не могут быть замкнуты одновременно, при замыкание первого автоматически разомкнется второе и наоборот. Для возможности независимого управления необходимо включить соответствующую настройку.

ЭНИП-2 поддерживает выполнение команд ТУ по протоколам:

- ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004 в виде Single command (<45>), Double command (<46>). Управление производится парой выходов: по команде ВКЛ, отправленной на любой из адресов, относящихся к паре DO, срабатывает нечетный выход, по команде ОТКЛ четный.
 - В ЭНИП-2-...-11 выход DO3 при получении команды ВКЛ замыкается, при получении ОТКЛ размыкается.
 - В ЭНИП-2-...-32 выход DO3 (LOC) по умолчанию работает одновременно с выходом DO2 (OFF). С помощью ПО «ES Конфигуратор» дискретный выход можно настроить на независимое срабатывание. В этом случае при получении команды ВКЛ выход замкнется, при получении ОТКЛ разомкнется.
- Modbus RTU/TCP по команде 05. По команде ВКЛ замыкается соответствующее реле, по команде ОТКЛ – размыкается. Реле остается замкнутым на время, указанное при настройке (по умолчанию – 5 секунд), также доступно постоянное удержание выхода до получения команды на размыкание.
- МЭК 61850 8-1 через CSWI. Для данного способа управления предварительно необходимо настроить модель коммутационного аппарата КА (обозначение в конфигураторе XCBR1, XSWI1, XSWI2, XSWI3): привязать к моделям КА дискретные сигналы, связанные с их положением, сигналы отвечающие за блокировку управления, сигнал, описывающие состояние местное/дистанционное; привязать дискретные выходы к командам управления (CSWI1, CSWI2, CSW3, CSWI4), назначить время удержания контактов, ожидаемое время выполнение команд, а также выделенный адрес телеуправления.

Алгоритм работы КА при подаче команды ТУ:

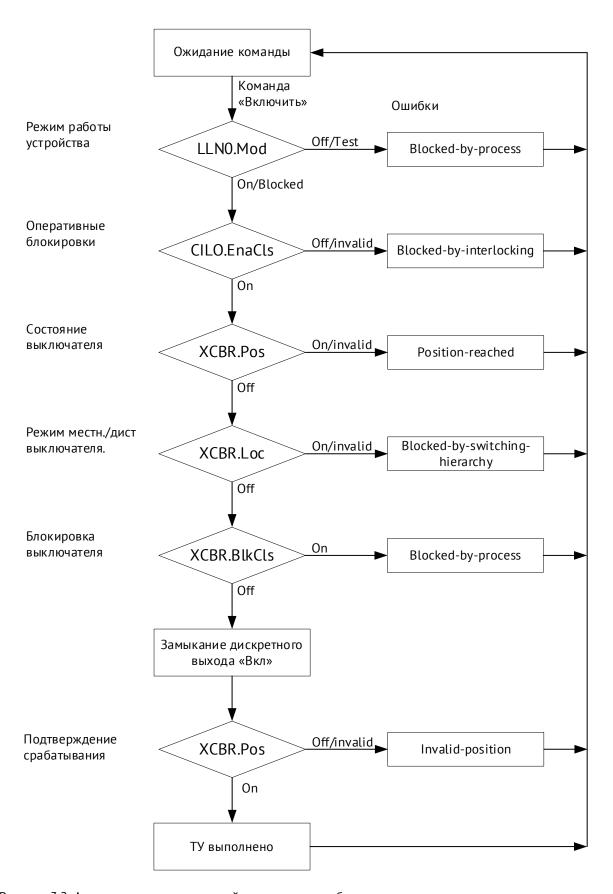


Рисунок 3.2. Алгоритм проверки условий и перечень ошибок при телеуправлении с использованием коммутационных аппаратов

Проверяется текущее положение КА. Если оно не является корректным (корректное: вкл 1/0, откл 0/1, некорректное: 11) или КА в состоянии заблокирован (сигналом местное/дистанционное или блокировкой на соответствующую команду ВКЛ или ОТКЛ), то команда ТУ не выполняется. Если команда ТУ не соответствует положению КА (подается «Включить» на включенный КА), то команда также не выполняется.

При выдаче команды ожидается изменение положения КА в течение заданного времени ожидания. Если этого не происходит – формируется квитанция об ошибке в соответствии с протоколом обмена.

Телеуправление в рамках протоколов ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004 может выполнятся двумя способами:

- непосредственное выполнение команды (адреса команды ТУ равны адресам пары DO в адресации протокола);
- в соответствии с моделью коммутационного аппарата аналогично МЭК 61850.

Если для дискретного выхода настроено условие срабатывание по логическому выражению, телеуправление данным выходом недоступно.

Для модификаций ЭНИП-2-...-Х3

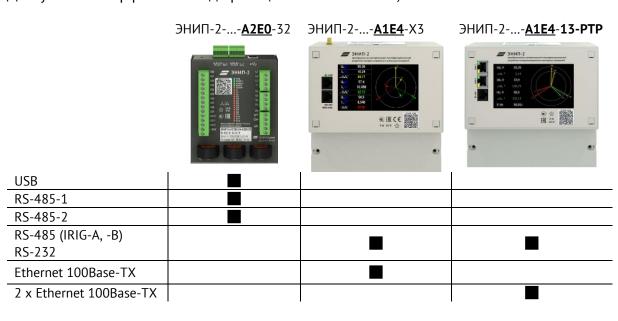
ЭНИП-2 поддерживает выполнение команд ТУ по протоколам:

- ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004 в виде Single command (<45>), Double command (<46>). Для первой пары управление всегда двухпозиционное: по команде ВКЛ, отправленной на любой из адресов, относящихся к паре DO, замыкается первый выход, по команде ОТКЛ второй.
- Modbus RTU/TCP по команде 05. По команде ВКЛ замыкается соответствующее реле, по команде ОТКЛ размыкается.

Дискретные выходы DO1 (ON) и DO2 (OFF) не могут быть одновременно замкнуты, при включении одного из них второй автоматически размыкается.

3.4 Интерфейсы и протоколы обмена данными

3.4.1 Доступные интерфейсы в модификациях ЭНИП-2-...-X1:


ЭНИП-2...-**A1EO**ЭНИП-2-...-**A2EO**USB

RS-485-1

RS-485-2

	ЭНИП-2 <u>АЗЕ4</u> ЭНИП-2 ЭНИП-2 ЭНИП-2 ЭНИП-2 ЭНИП-2 ЭНИП-2 ЭНИП-2	ЭНИП-2 <u>A2SFP</u> 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ЭНИП-2 <u>A2E4x2(FX)</u>
USB			
RS-485-1			
RS-485-2			
RS-485-3			
Ethernet 100Base-TX			
SFP GPON			
2 x Ethernet 100Base-TX(FX)			

Доступные интерфейсы в модификациях ЭНИП-2-...-32, ЭНИП-2-...-X3:

Подключение к интерфейсам ЭНИП-2-...-X1:

Интерфейс	Сигнал	Контакты RJ45
BC 40F 3	A (data+)	7
RS-485-2 RS-485-3	B (data-)	8
K3-403-3	GND	5
	Питание ЭНМИ: +24 В	1, 2
	Питание ЭНМИ: 0 В	3, 4
RS-485-2 24V	A (data+)	7
	B (data-)	8
	GND	5
	TX+ (Transmit Data+)	1
Fallsons	TX- (Transmit Data-)	2
Ethernet	RX+ (Receive Data+)	3
	RX- (Receive Data-)	6 1 2 3 4 5 6 7 8
RS-485-1 (винтовые клеммные зажимы)	D1+ (data+) D1- (data-) G1 - GND	-

Подключение к интерфейсам ЭНИП-2...-32:

Интерфейс	Сигнал
RS-485-1	D1+ (data+)
RS-485-2	D1- (data-)
(винтовые клеммные зажимы)	G1 - GND

Подключение к интерфейсам ЭНИП-2-...-Х3:

Порт	Интерфейс	Сигнал	Кон	ıтакты RJ45
	RS-485 (IRIG-A, -B)	A (data+)	7	
		B (data-)	8	
		GND	5	
2	RS-232 (служебный)	Rx (Receive Data)	3	
RS-485		Tx (Transmit Data)	4	
ŭ		GND	2	
	RS-232 (для индикатора)	Rx (Receive Data)	1	
		Tx (Transmit Data)	6	
		GND	2	
LAN	Ethernet 100Base-T	Tx+ (Transmit Data+)	1	
		Tx- (Transmit Data-)	2	
		Rx+ (Receive Data+)	3	1 2 3 4 5 6 7 8
		Rx- (Receive Data-)	6	

3.4.2 Интерфейсы RS-485 имею следующие характеристики:

- Скорость обмена 1200-115200 бит/сек;
- Четность none, even, odd;
- Стоп-бит 1 или 2;

Протокол обмена назначается при настройке, доступные варианты:

- ΓΟCT P MЭK 870-5-1-95 (FT3);
- Modbus RTU;
- ΓΟCT P MЭK 60870-5-101-2006.

Все интерфейсы поддерживают циклический режим передачи для отображения измеренных и вычисляемых параметров на внешнем индикаторе ЭНМИ.

«RS-485-2» дополнительно поддерживает обмен с внешними модулями (до 4 шт.) – ЭНМВ-1, Зной. При подключении модулей ЭНМВ рекомендуется устанавливать максимальную скорость на порту: 115200 бод (38400/57600 бод при одновременном подключении ЭНМВ и ЭНМИ).

Интерфейс «RS-485-2» конструктивно реализован в виде двух разъемов RJ45, на одном из которых кроме пинов с интерфейсными цепями выведено питание 24 В= для питания внешних модулей индикации ЭНМИ.

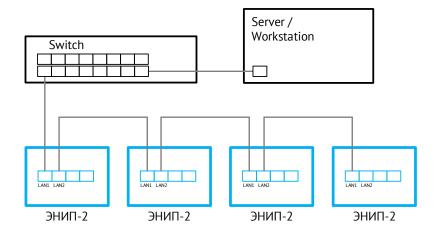
Не рекомендуется использовать встроенный источник 24 В= ЭНИП-2 для питания ЭНМИ, если длина кабеля превышает 20 метров. При больших расстояния необходимо устанавливать отдельный источник 24 В= для питания индикатора.

3.4.3 Интерфейсы Ethernet:

Скорость обмена 100 Мбит/сек. Доступно 4 сокета. Каждый сокет настраивается независимо.

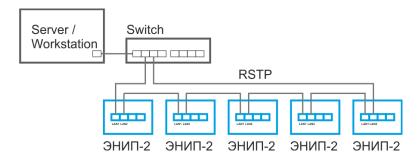
Поддерживаемые протоколы:

Протокол	ЭНИП-2X1	ЭНИП-2Х3	
ГОСТ Р МЭК 60870-5-104-2004	+	+	
ГОСТ Р МЭК 60870-5-101-2006 (over UDP)	+	+	
Modbus TCP/RTU	+	+	
RS-TCP (сквозной канал)	+	-	
МЭК 61850 8-1	опция	-	
МЭК 61850 9-2LE (приём)	-	для ЭНИП-2-0	
C37.118-2011	-	+	
SNTP v4	+	-	
SNMP v1	+	+	

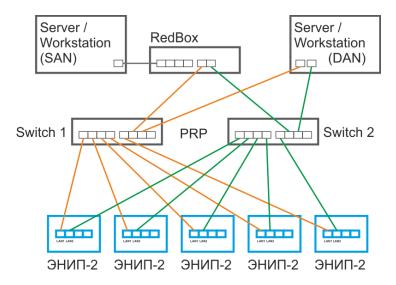

В модификации ЭНИП-2-...-A2E4x2FX-21 установлено два интерфейса Ethernet 100BASE-FX. Тип разъемов LC, работают с 62,5/125 мкм и 50/125 мкм многомодовым (multimode) волокном. LED излучатель работает на длине волны 1300 нм, максимальное расстояние передачи сигнала

до 2000 метров. Для патч-кордов тип используемой полировки - UPC.

Излучение соответствует классу 1 (лазеры и лазерные системы очень малой мощности, не способные создавать опасный для человеческого глаза уровень облучения) в соответствии со стандартом EN60825-1.


Порты Ethernet «максимальной» модификации работают в режиме коммутатора. Т.е. ЭНИП-2 имеет один IP адрес. При этом возможны различные варианты организации сети:

Без протоколов резервирования


Порты ЭНИП-2 работают в режиме коммутатора. Допускается только магистральная схема соединения устройств между собой. Количество устройств не ограничено.

Протокол RSTP (Rapid spanning tree protocol)

Всё сетевое оборудование должно поддерживать протокол RSTP. Чаще всего используется объединение устройств в кольцо. Максимальное количество ЭНИП-2 в кольце с одни коммутатором 39 шт.

Протокол PRP (Parallel Redundancy Protocol)

Протокол PRP позволяет передавать данные от ЭНИП-2 одновременно в две сети любой произвольной топологии. В каждый Ethernet-пакет устройство добавляет специальный тег Redundancy Control Trailer (RCT), все данные выдаются одновременно по обеим сетям к одному получателю. Вышестоящий уровень принимает пакеты и отбрасывает тот, который пришел вторым или является некорректным. Таким образом, при неисправности сетевого оборудования или обрыве канала связи перерыва в передаче данных не произойдет.

В модификации ЭНИП-2-...-A2SFP2-21 установлен SFP-разъем для подключения модуля GPON (пассивная оптическая сеть).

3.4.4 USB

Служебный интерфейс. Предназначен для конфигурирования, просмотра измеряемых параметров, обновления микропрограммы. Может также использоваться для работы в режиме преобразователя USB в RS-485 (внешний интерфейс – RS-485-2 ЭНИП-2) – так называемый «USB-COM режим».

3.4.5 Выбор параметров портов, а также протоколов производится с помощью ПО «ES Конфигуратор»

Выбор протокола для каждого порта осуществляется индивидуально, т.е. возможно, как наличие одинаковых протоколов обмена разных портах, так и их различие (например, RS-485-1 - ГОСТ Р МЭК 60870-5-101-2006, RS-485-2 - Modbus RTU, RS-485-3 – ГОСТ Р МЭК 60870-5-101-2006).

3.4.6

Описание Modbus RTU приведено в Приложении Б настоящего РЭ. Набор и адресация параметров, передаваемых в протоколе Modbus RTU, может гибко настраиваться пользователем.

Описание совместимости ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004 приведено в Приложении В настоящего РЭ.

Все измерения могут передаваться в формате с плавающий запятой – float, с учетом модификации и коэффициентов трансформации, или в целочисленном формате – int16, в этом случае передача осуществляется в квантах в соответствии с табл. 3.1.

Таблица 3.1. Кванты для целочисленных измерений.

Параметр, единицы измерения		Величина кванта				
		Iном = 5 A	Іном = 1 А			
		Uφ = 57,7	Uф = 220/230	Uф = 400	Uф = 57 , 7	
1	Ток, А	0,001			0,0002	
U	Напряжения, В	0,01	0,04	0,08	0,01	
P/Q/S/W	Мощность (энергия), Вт(/ч)/Вар(/ч)/ВА	0,1	0,4	0,8	0,02	
F	Частота, Гц	0,001				
cosф, tgф		0,001				
ф	Угол ф	0,01				

3.4.8 Настройки интерфейсов по умолчанию:

Интерфейс	Настройки
RS-485-1 МЭК 60870-5-101-2006, скорость 19200 бит/сек, адрес 1;	
RS-485-2	Modbus RTU, скорость 19200 бит/сек, адрес 1, циклическая передача данных
RS-485-3	Modbus RTU, скорость 19200 бит/сек, адрес 1
Порт Ethernet	IP 192.168.0.10, протокол МЭК 60870-5-104-2004, порт 2404

Адресация параметров по умолчанию для каждого протокола приведена в соответствующем приложении.

3.4.9 Для доступа к web-странице для конфигурирования **ЭНИП-2-...-X1** - необходимо набрать в адресной строке браузера:

http://XXX.XXX.XXX.XXX (XXX.XXX.XXX.XXX – IP адрес ЭНИП-2) либо http://enip2nXXXXX (XXXXX – все цифры серийного номера ЭНИП-2). По умолчанию имя входа admin и пароль admin.

Если IP адрес ЭНИП-2 не известен, можно его узнать с помощью утилиты «ESFindIP».

Логические выражения

3.5 В ЭНИП-2 (за исключением ЭНИП-2-...-Х3) доступны для настройки 32 DIO – дискретных сигнала, на которые могут назначаться встроенные или внешние DI и DO, виртуальные DO, подписки GOOSE, уставки, диагностика или логические выражения.

Источниками данных для логических выражений могут служить любые DIO, в том числе другое логическое выражение или виртуальный DO. Виртуальный DO – дискретный сигнал, состояние которого может быть изменено командой телеуправления, принятой по любому из поддерживаемых протоколов. Реального замыкания дискретных выходов при срабатывании виртуального DO не происходит.

Результат логического выражения может быть передан по любому поддерживаемому протоколу на верхний уровень в виде TC или использован в качестве управляющего воздействия на дискретный выход.

Для логических выражений доступны функции:

- И (AND);
- ИЛИ (OR);
- HE (NOT);
- Задержка (DELAY), может быть трех видов на включение, на отключение, на включение и отключение. Продолжительность от 1 до 65535 мс.
- Качество (VALID) проверка качества дискретной информации (1 актуально, 0 неактуально).

Из основных функций составляются другие более сложные логические элементы (XOR, NOR, NAND, XNOR и др).

Логические выражения могут используются для выполнения программных оперативных блокировок, автоматизации переключений (ABP), управления различными системами и др.

Настройки обработки качества позволяют оценивать актуальность дискретных сигналов, используемых в качестве источников для логического выражения.

Для настройки логики используется графический интерфейс в программе «ES Конфигуратор». Он представляет собой рабочую область, на которую добавляются логические функции (до 32 на один DIO) и объединяются связями.

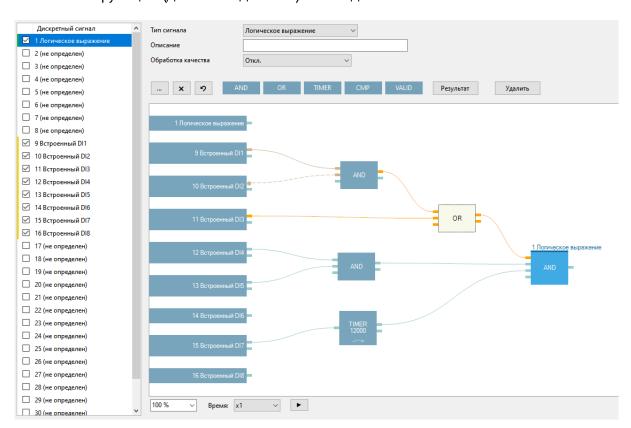


Рисунок 3.3. Пример настройки логического выражения

Часы

3.6 Преобразователи ЭНИП-2 оснащены часами реального времени. Наличие часов позволяет присваивать метки единого астрономического времени записям в журналах преобразователя и передавать параметры посредством стандартных протоколов с метками времени. Для протоколов МЭК 60870-5-101, МЭК 60870-5-104 это специальные типы с 7-байтной меткой времени, для Modbus RTU, Modbus TCP -

отдельные регистры со значением текущего времени на момент запроса, для МЭК 61850-8-1 - определенные наборы передаваемых параметров, в которые включена метка времени. В протоколе С37.118.2 данные передаются в кадрах с 32-битной меткой времени (UNIXtimebase).

Часы ЭНИП-2 должны периодически синхронизироваться для обеспечения достоверности меток времени.

- 3.6.2 Синхронизация часов преобразователей ЭНИП-2-...-X1, ЭНИП-2-...-32 осуществляется:
 - По протоколу ГОСТ Р МЭК 870-5-1-95 (FT3) от внешнего модуля блока коррекции времени (БКВ) ЭНКС-2. Точность отсчета времени часов при этом составляет не хуже 0,5 мс, точность присвоения метки времени 1 мс.
 - По протоколу ГОСТ Р МЭК 60870-5-101-2006 (RS-485);
 - Модификации с Ethernet по протоколу ГОСТ Р МЭК 60870-5-104-2004 или SNTP.

При отсутствии синхронизации часов уход времени не превышает 5 с в сутки.

3.6.3 Рекомендуемый период синхронизации часов по протоколам ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004 — не реже 30 сек. В модификациях ЭНИП-2-...-X1, ЭНИП-2-...-32 для контроля синхронизации настраивается «время актуальности». При отсутствии синхронизации в течении этого времени метки времени в протоколах ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004, МЭК 61850 будут передаваться с признаком недостоверности. Передаваемая метка времени может быть настроена как UTC (Всемирное координированное время) или локальное время.

Синхронизацию часов ЭНИП-2-...-X1, ЭНИП-2-...-32 может быть произведена как по времени UTC, так и в локальном времени.

3.6.4 В часах ЭНИП-2-...-X3 с поддержкой синхронизированных векторных измерений используется термокомпенсированный кварцевый генератор и требуют постоянной синхронизации от источников точного времени: от внешних устройств по протоколу IRIG-A, IRIG-B, PTP (опционально) или от встроенного приемника сигналов навигационных систем GPS/ГЛОНАСС.

Ход часов ЭНИП-2-...-Х3 с точностью не хуже 1 мкс достигается благодаря корректировке времени на основе постоянного измерения и статистическом анализе частоты кварцевого генератора по сигналам источника точного времени. Этим обеспечивается дополнительная термокомпенсация и учитывается деградация компонентов часов реального времени.

Полученное точное время используется в том числе и для синхронизированного запуска АЦП (SAR) для синхронизированных векторных измерений согласно IEEE C37.118.1.

Если сигнал от спутников GPS/ГЛОНАСС пропал или прервалась синхронизация по протоколу IRIG-A, то с этого момента в течение 60 секунд ЭНИП-2-...-ХЗ продолжает рассчитывать углы векторов и присваивать метки времени, опираясь на программные часы, ранее синхронизированные от источника точного времени. В течение этого периода данные с метками времени продолжают передаваться. Спустя 60 секунд данные продолжают передаваться, но меткам времени присваивается признак недостоверности.

Таким образом, для нормальной эксплуатации ЭНИП-2-...-Х3 требуется постоянная синхронизация от источников точного времени, что и реализуется в системах мониторинга переходных режимов (СМПР).

3.6.5 Выбор настроек синхронизации времени в ЭНИП-2 осуществляются посредством ПО «ESConfigurator» в разделе Часы.

3.7 Журналы

Преобразователи ЭНИП-2-...-X1, ЭНИП-2-...-32 сохраняют во встроенной энергонезависимой памяти различные журналы:

- Журнал событий (до 40 событий: включение/выключение питания, сброс, обновление микропрограммы, неисправность);
- Журнал дискетных сигналов (до 32 типов различных параметров):
 - **ЭНИП-2-...-X1** до 200 записей: изменение состояний дискретных входов и выходов ЭНИП-2, дискретных входов и выходов внешних модулей ЭНМВ, срабатывание уставок на настроенные параметры в ЭНИП-2;
 - **ЭНИП-2-...-32** до 200 записей: изменение состояний дискретных входов и выходов, срабатывание уставок на настроенные параметры в ЭНИП-2.

Содержимое журналов ЭНИП-2 доступно для скачивания в виде файлов по протоколам обмена ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004 (только для ЭНИП-2-...-X1).

Преобразователи ЭНИП-2-...-X3 сохраняют во встроенной энергонезависимой памяти журнал событий (включение/выключение питания, сброс, обновление микропрограммы, неисправность). Содержимое журнала доступно для скачивания в виде файлов по протоколу FTP.

3.8 Измерение энергии

ЭНИП-2-...-X1, ЭНИП-2-...-32 вычисляет электрическую энергию в 4 квадрантах и сохраняет накопленные значения энергии (активная потребленная, активная отпущенная, реактивная потребленная, реактивная отпущенная) в энергонезависимой памяти.

Максимальное значение накапливаемой энергии составляет 9999999,9 Вт·ч (ВАр·ч). После достижения этого значения происходит сброс счетчиков в ноль и начинается накопление заново.

Точность измерения энергии не декларируется в описании типа ЭНИП-2 (прибор не является счетчиком электроэнергии), однако фактически ЭНИП-2 соответствует классу точности 0,2S (относительная погрешность измерения энергии при 0,01 І_{ном} составляет 0,35%, при І_{ном} – 0,001%).

3.9 Дисплей

3.9.1 Модификации с поддержкой синхронизированных векторных измерений ЭНИП-2-...-13 и ЭНИП-2-...-23 имеют цветной сенсорный дисплей 4.3" размером 480x272 точек. Режим работы дисплея непрерывный.

На дисплее доступно для отображения:

Векторные диаграммы токов и напряжений

Измеряемые параметры в табличном виде (ток, напряжение, мощность, частота и др.)

Просмотр текущих осциллограмм напряжений и токов

Информация с GPS модуля (текущие время и дата)

Настройка пароля для конфигурирования

Настройка параметров LAN

3.9.2 Для модификаций ЭНИП-2-...-X1 и ЭНИП-2-...-32 доступны внешние модули индикации ЭНМИ. Подключение осуществляется к любому интерфейсу RS-485.

4 Комплектность

В комплект поставки преобразователей ЭНИП-2 входят:

- Преобразователь измерительный многофункциональный ЭНИП-2 - 1 шт.;
- Формуляр ЭНИП.411187.001 ФО - 1 экз.;
- СD (включает руководство по эксплуатации ЭНИП.411187.002 РЭ, методику поверки ЭНИП.411187.001 МП, программное обеспечение и информационные материалы) продукции)

5 Использование по назначению

5.1 Указания по эксплуатации

Эксплуатация преобразователей ЭНИП-2 должна производиться в соответствии с настоящим руководством по эксплуатации.

Преобразователи ЭНИП-2 подключаются к измерительным трансформаторам тока, измерительным трансформаторам напряжения или напрямую в цепи напряжения. Модификации ЭНИП-2-0-...-Х3 подключаются K шине процесса согласно IEC 61850-9-2. Подключение и отключение преобразователей ЭНИП-2 измерительным цепям, а также к цифровым интерфейсам необходимо выполнять только после отключения цепей питания, приняв меры против случайного включения.

Подключение преобразователей ЭНИП-2 Κ устройствам сбора данных контролируемых пунктов телемеханики, устройствам сбора и передачи данных автоматизированных информационно-измерительных систем учета, а также к другим системам сбора и передачи информации осуществляется в соответствии с эксплуатационной документацией на перечисленные выше При определении количества и подключаемых на одну информационную магистраль RS-485 (RS-485-1, RS-485-2 или RS-485-3) преобразователей ЭНИП-2 и скорости их опроса необходимо учитывать рекомендации, приведенные в п. 3.1 настоящего РЭ.

5.2 Эксплуатационные ограничения

Преобразователь не предназначен для работы в условиях взрывоопасной и агрессивной среды.

Тип атмосферы по содержанию коррозионно-активных агентов на открытом воздухе – промышленная (II) в соответствии с ГОСТ 15150-69.

Охлаждение устройства осуществляется за счет естественной конвекции. При работе преобразователь не должен подвергаться воздействию прямого нагрева источниками тепла до температуры более +70 °C. В помещении не должно быть резких колебаний температуры, вблизи места установки преобразователей не должно быть источников сильных электромагнитных полей.

5.3 Подготовка к монтажу

После получения преобразователя со склада убедиться в целостности упаковки. Распаковать, извлечь ЭНИП-2 и формуляр (обеспечить сохранность формуляра).

Произвести внешний осмотр ЭНИП-2, убедиться в отсутствии видимых механических повреждений и наличии комплектности согласно п. 4.

Проверить соответствие характеристик, указанных в паспорте с характеристиками, указанными на лицевой и верхней стороне преобразователя.

5.4 Общие указания по монтажу

Вблизи установленного преобразователя ЭНИП-2 не допускается производить слесарные работы, которые могут привести к попаданию мелких частиц внутрь корпуса.

Все работы по монтажу и эксплуатации производить с соблюдением действующих правил, обеспечивающих безопасное выполнение работ в электроустановках.

Крепление преобразователей осуществлять на монтажную рейку DIN 35 мм, на панель или специальный кронштейн. Допускается крепление преобразователей ЭНИП-2 под любым углом к горизонтальной плоскости.

Подключение преобразователей **ЭНИП-2-...-X1** и **ЭНИП-2-...-X3** к измерительным цепям тока и напряжения производить проводами сечением не более 4 мм².

При подключении измерительных цепей к клеммам момент затяжки не должен быть более 0,5-0,6 Н*м.

Подключение преобразователей **ЭНИП-2-...-32** к измерительным цепям тока производить проводами сечением не более 4 мм², к измерительным цепям напряжения и цепям контроля фаз - проводами сечением не более 2,5 мм².

Цепи ввода и вывода дискретных сигналов подключать к преобразователям проводами сечением не более 2,5 мм².

Цепи питания подключать к преобразователям проводами сечением не более 2,5 мм 2 (для исполнений **ЭНИП-2-...-X1** и **ЭНИП-2-...-X3**), и не более 1,5 мм 2 (для исполнения **ЭНИП-2-...-32**).

Подключение преобразователей к интерфейсам RS-485 производить экранированным кабелем типа «витая пара» в соответствии с приложением A. Сечение провода не менее 0,2 мм². Для подключения кабеля к интерфейсам «RS-485-2», «RS-485-3» преобразователя **ЭНИП-2-...-X1** обжать кабель коннектором RJ-45.

Подключение преобразователя к интерфейсу «Ethernet» производить экранированным кабелем типа «витая пара» 5-й категории (допускается использовать стандартный сетевой «патч-корд»).

6 Техническое обслуживание и ремонт

6.1 Общие указания

Эксплуатационный надзор за работой преобразователя должен производиться лицами, за которыми закреплено данное оборудование.

Преобразователи ЭНИП-2 не должны вскрываться во время эксплуатации. Нарушение целостности гарантийной наклейки снимает с производителя гарантийные обязательства. Все возникающие во время эксплуатации неисправности устраняет предприятие-изготовитель.

На устройства серии ЭНИП-2 предоставляется гарантия 60 месяцев с даты поставки.

6.2 Меры безопасности

Работы по техническому обслуживанию должны выполняться квалифицированным персоналом.

Персонал, осуществляющий обслуживание преобразователей ЭНИП-2, должен руководствоваться настоящим РЭ, а также ПОТ РМ-016-2001, РД153-34.0-03.150-00 «Межотраслевыми правилами по охране труда (правила безопасности) при эксплуатации электроустановок».

6.3 Порядок технического обслуживания

Микропроцессорные устройства не требуют в процессе эксплуатации при нормальных условиях дополнительного технического обслуживания. Однако, в соответствие с имеющимися регламентными документами, стандартами по эксплуатации устройств ССПИ, ТМ, АСДУ и др. возможны периодические и внеплановые осмотры, проверки оборудования.

6.3.1 Первичная поверка

Все средства измерений, внесенные в Государственный реестр средств измерений, перед поставкой проходят процедуру первичной поверки в соответствие с утвержденной методикой поверки. Межповерочный интервал указан в свидетельстве об утверждении типа СИ.

6.3.2 Обновление прошивки

Большинство выпускаемых устройств имеет возможность обновления прошивки. Рекомендуется производить обновление при очередном плановом обслуживании.

Описание процесса обновления прошивки содержится в руководствах по эксплуатации в разделе описания работы ПО «EsBootloader».

Ремонт

Если устройство неисправно, или повреждено, необходимо:

6.3.3

- Демонтировать устройство;
- Составить акт неисправности, указав признаки неисправности прибора, контактные данные лица, диагностировавшего неисправность.
- Надежно упаковать устройство, чтобы исключить вероятность его повреждения при транспортировке.
- Отправить устройство вместе с актом неисправности и сопроводительным письмом, содержащим адрес и Ф.И.О. контактного лица для обратной отправки отремонтированных приборов.

Адрес и реквизиты для отправки можно уточнить у технической поддержки, или в отделе продаж.

6.3.4 Осмотр оборудования

Рекомендован следующий порядок осмотра оборудования на месте эксплуатации:

- проверить работу имеющихся индикаторов;
- проверить состояние корпуса, убедиться в отсутствии механических повреждений;
- проверить состояние креплений и внешних цепей;

6.3.5 Профилактическое обслуживание

Перечень работ, которые могут быть включены, на усмотрение эксплуатирующей организации, в перечень плановых работ:

- Проверка наличия необходимого комплекта технической, программной и эксплуатационной документации.
- Проверка на актуальность версий технологического ПО, используемого для настройки и диагностики устройств.
- Копирование текущей конфигурации.

- Сравнение текущей конфигурации устройства с имеющейся в архиве.
- При необходимости обновление прошивок устройств с фиксированием номеров используемых версий прошивок.
- При необходимости тестирование резервных копий настроек на работоспособность.
- Плановая смена паролей для доступа к устройствам.
- Проверки правильности функционирования устройств:
 - правильность принимаемой и ретранслируемой информации, отработка ввода резерва (для устройств и систем сбора и передачи данных);
 - соответствие сигнализации и измерений текущей схеме и состоянию оборудования;
 - анализ журналов событий, журналов состояний DIO, диагностических сообщений (пропадание питания, факты синхронизации времени, статистика работы устройства и др.);
- Заполнение документации по текущему обслуживанию.

7 Настройка прибора

Конфигурирование преобразователей ЭНИП-2 заключается в назначении связных адресов и определении скорости обмена портов RS-485, определении IP-адреса ЭНИП-2 и его клиентов, выборе и настройке протоколов обмена и, при необходимости, настройке адресации передаваемым параметрам, а также алгоритмов передачи данных. Адрес и скорость для каждого порта RS-485 преобразователя ЭНИП-2 могут быть разными.

7.1 Обновление встроенного программного обеспечения

- 7.1.1 ПО «EsBootloader» используется для обновления микропрограммы ЭНИП-2, активации дополнительных опции, сброса настроек прибора на заводские.
- Для обновления микропрограммы ЭНИП-2 запустите ПО «EsBootloader», далее 7.1.2 следуйте нижеприведенным указаниям:

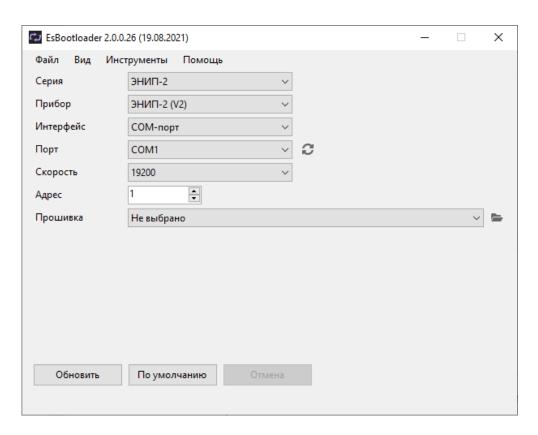
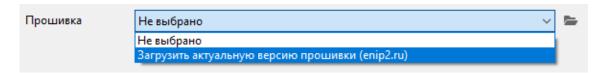



Рисунок 7.1. ПО «EsBootloader»

• Выбрать Серия: ЭНИП-2, необходимый тип прибора; Интерфейс: USB/Ethernet/COM-порт; указать параметры подключения в соответствии с выбранным интерфейсом;

 Указать путь к файлу прошивки используя меню Файл -> Открыть, кнопку , с помощью функции Drag-and-drop или автоматически загрузить последнюю версию с сайта:

В строке Прошивка отобразиться путь к файлу прошивки, ниже будет указан тип прибора и версия новой прошивки.

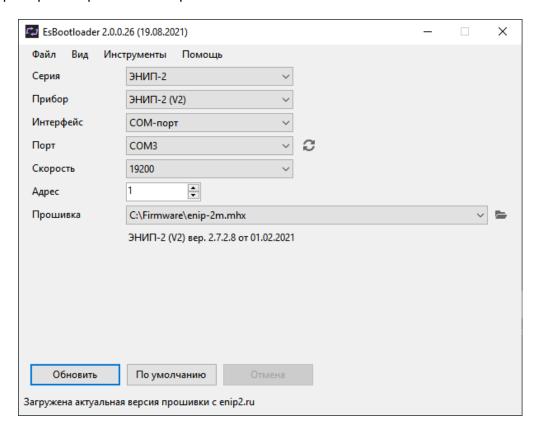


Рисунок 7.2. ПО «EsBootloader» после выбора прошивки.

• Нажать кнопку **Обновить**, внизу окна программы будет последовательно отображен прогресс операций стирания, записи и проверки прошивки:

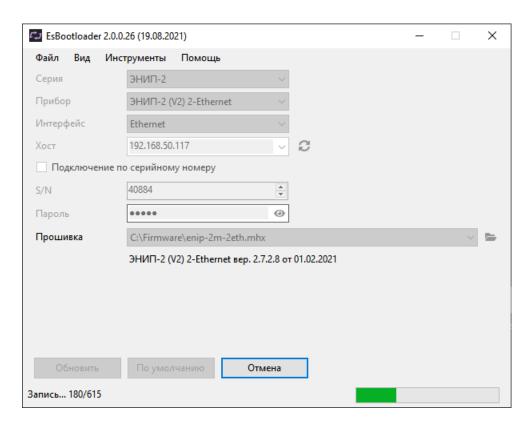


Рисунок 7.3. Процесс записи прошивки в прибор.

При обновлении ЭНИП-2-...-X1 по сети Ethernet необходимо выполнять следующее условие: если ЭНИП-2 подключен по USB к ПК с запущенным ПО «ES Конфигуратор», то необходимо закрыть данное ПО на время обновления прошивки.

Если вы обновляете прибор с прошивки 1.х.х.х до 2.х.х.х, в начале для ЭНИП-2 необходимо установить update patch (не требуется для приборов с двумя портами Ethernet).

При обновлении микропрограммы у ЭНИП-2-...-A2E4x2(FX)-XX (модель с двумя Ethernet портами) надо учитывать следующие особенности:

- 1. В ПО «EsBootloader» необходимо выбрать тип устройства ЭНИП-2 (V2) 2-Ethernet.
- 2. На прибор обязательно должно быть подано внешнее питание;
- 3. Если активирована настройка «Резервирование RSTP» и ЭНИП-2 не включен в кольцевую сеть, то обновление микропрограммы по Ethernet возможно только по LAN-1.

За версию настроек в измерительном преобразователе ЭНИП-2 отвечает последняя цифра в номере микропрограммы. Если в номере версии старой и новой микропрограмм последняя цифра отличается, то все настройки после обновления микропрограммы будут сброшены на настройки по умолчанию. Чтобы сохранить старые настройки, сохраните конфигурацию с помощью ПО ES Конфигуратор, обновите прошивку и затем запишите сохраненные настройки в прибор обратно.

7.1.3 Для обновления микропрограммы сенсорного индикатора ЭНИП-2-...-X3 необходимо подключиться к служебному порту RS-232, который подключен к пинам разъема RJ-45 порта IRIG-A.

Микропрограмма сенсорного индикатора обновляется также с помощью специализированного ПО «EsBootloader». Обновление микропрограммы осуществляется через СОМ-порт.

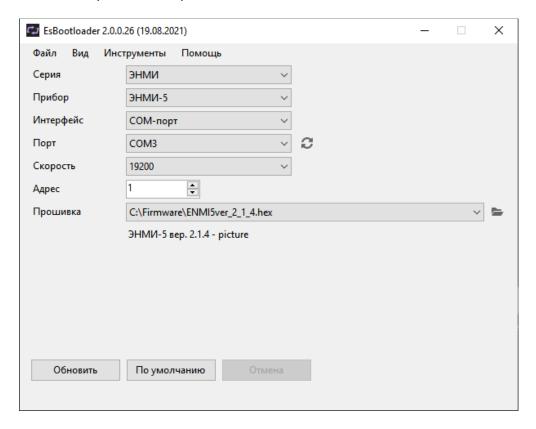
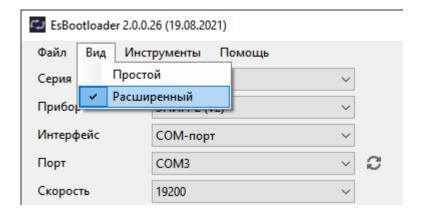



Рисунок 7.4. Обновление индикатора ЭНИП-2

7.2 Активация протокола МЭК 61850

Для активации поддержки протокола МЭК 61850 устройств ЭНИП-2 необходимо выполнить следующие действия:

- Подключить прибор к компьютеру через любой из интерфейсов USB, RS-485, Ethernet;
- Подать питание на прибор;
- Запустить ПО «EsBootloader», выбрать необходимый тип прибора, интерфейс, включить расширенный вид:

• Нажать кнопку **Подключить.** При успешном подключении кнопки нижнего ряда станут активными:

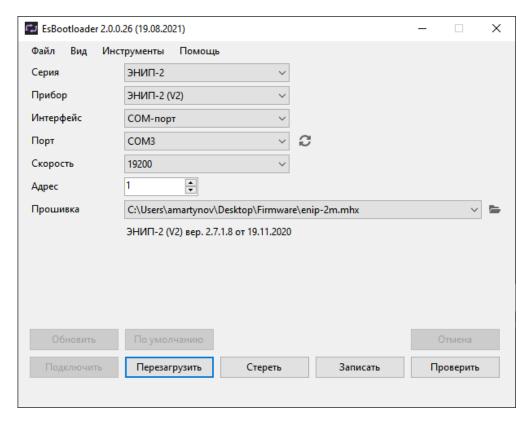
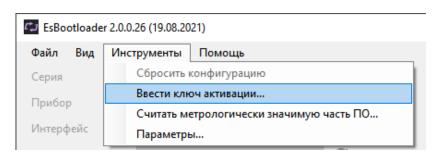



Рисунок 7.5. Подключение к прибору.

• Выбрать Инструменты -> Ввести ключ активации:

• В появившемся окне вставить ключ активации, полученный от заводаизготовителя, нажать **Ок**:

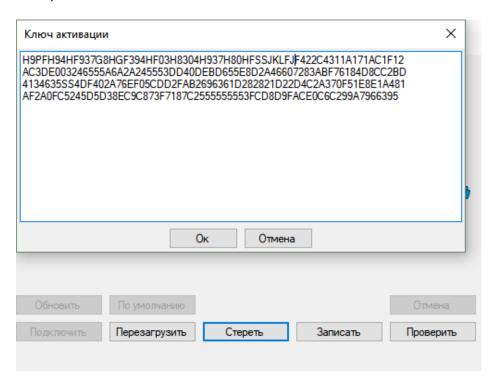
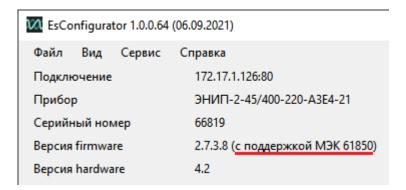



Рисунок 7.6. Окно ввода ключа активации.

- Для выхода из режима активации нажать Перезагрузить.
- После перезагрузки прибора в ПО «ES Конфигуратор» будет отображаться поддержка МЭК 61850:

7.3 Восстановление настроек по умолчанию

Чтобы сбросить настройки прибора на значения по умолчанию необходимо воспользоваться ПК с установленной утилитой «EsBootloader» (рис. 7.1).

Подключите прибор к компьютеру с помощью USB или COM-порта, установить параметры подключения, нажмите кнопку *По умолчанию*. Настройки прибора станут заводскими. Значения параметров для каждого интерфейса см. в п. 3.4.

7.4 Конфигурирование устройства

Конфигурирование преобразователей ЭНИП-2 осуществляется при помощи программного обеспечения «<u>ES Конфигуратор</u>» или веб-консоли. ПО предназначено как для настройки преобразователей ЭНИП-2, так и просмотра измеряемых параметров. Экранная форма основного окна программы для настройки ЭНИП-2-...- X1, ЭНИП-2-...-32 представлена на рисунке 7.7. П

Для конфигурирования преобразователей ЭНИП-2 рекомендуется использовать компьютеры, оснащенные портами USB, либо RS-485 (с использованием преобразователя интерфейсов RS-232/RS-485) или Ethernet.

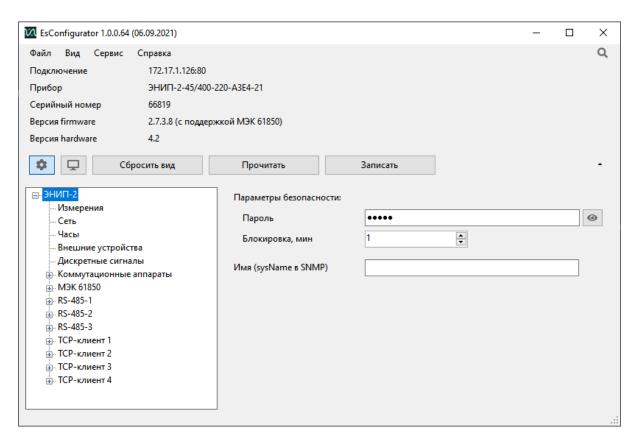


Рисунок 7.7. ПО «ES Конфигуратор».

7.5 Конфигурирование через web-интерфейс

Доступно только для модификации ЭНИП-2-...-X1. Для доступа к удаленному конфигурированию ЭНИП-2 через сеть веб-браузер необходимо открыть страницу по адресу http://192.168.0.10 (где указанный IP – адрес по умолчанию, или IP адрес ЭНИП-2 настроенный пользователем). Также допустимо обращение по адресу ENIP2NXXXXX (где XXXXX – все цифры серийного номера ЭНИП-2).

Для входа в страницу нужно ввести параметры авторизации:

Имя пользователя: admin

Пароль: admin

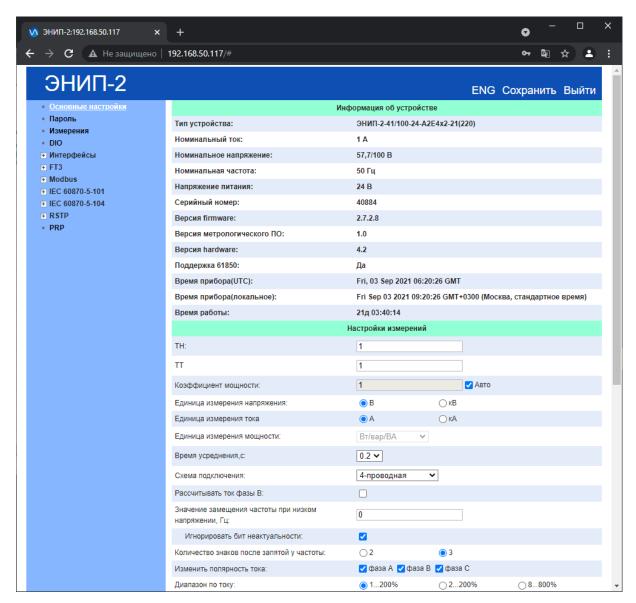


Рисунок 7.8. Экранная форма окна настройки ЭНИП-2 в веб интерфейсе

Если IP адрес ЭНИП-2 неизвестен, то для быстрого поиска ЭНИП-2 в сети и определения его IP-адреса можно воспользоваться специализированной утилитой «ES Find IP». «ES Find IP» позволяет просканировать сеть и найти все приборы производства ИЦ «Энергосервис» подключенные в локальную сеть, изменить IP адрес и другие сетевые настройки.

76

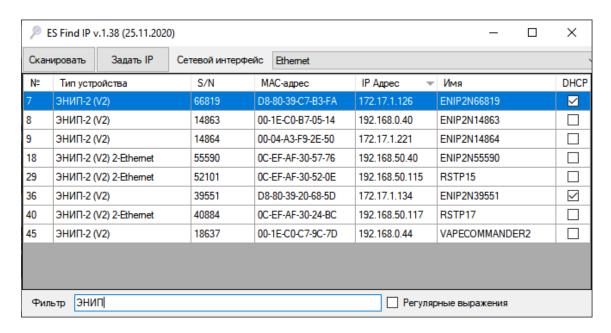


Рисунок 7.9. Экранная форма ПО «ES Find IP»

Окно изменения настроек открывается двойным щелчком по строке с требуемым прибором.

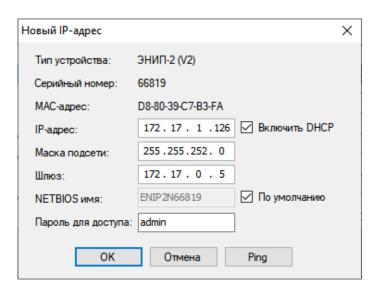


Рисунок 7.10. Определение сетевых настроек с помощью ПО «ES Find IP»

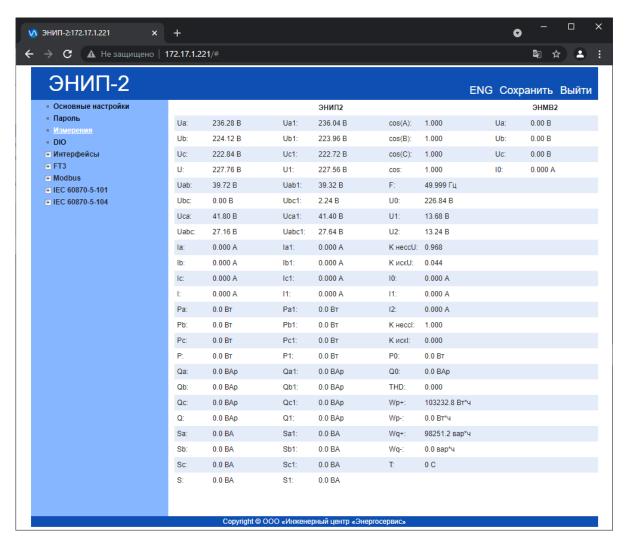


Рисунок 7.11. Экранная форма окна просмотра измеряемых и вычисляемых параметров в веб-консоли ЭНИП-2

7.6 Конфигурирование через сенсорный дисплей

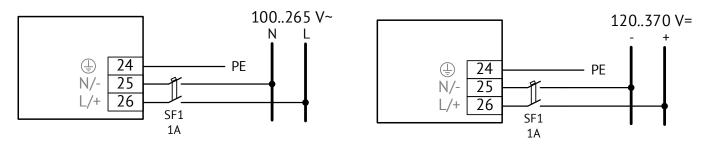
Для модификации ЭНИП-2-...-X3 доступна настройка некоторых параметров на сенсорном дисплее. Для этого необходимо перейти в раздел настройки , пароль по умолчанию 1122. В данном разделе задаётся IP-адрес прибора, разрешенные клиенты для подключения по МЭК-60870-5-104, включается DHCP.

8 Рекомендации по подключению внешних цепей

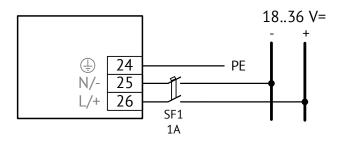
8.1 Подключение к цепям питания

Подключение необходимо произвести при условии выполнения следующих условий:

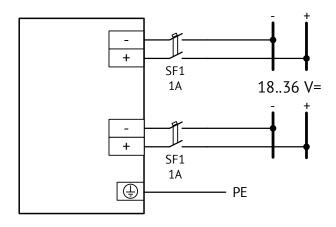
- в электрической схеме цепей питания ЭНИП-2 должен быть предусмотрен внешний выключатель или автомат защиты;
- внешний выключатель или автомат защиты должен располагаться в непосредственной близости к ЭНИП-2 и в пределах досягаемости для эксплуатационного персонала.


Внимание! Перед подключением к ЭНИП-2 цепей питания необходимо убедиться в том, что все входящие источники питания отключены. Несоблюдение данного требования может привести к серьезной или даже смертельной травме или повреждению оборудования.

Для подключения ЭНИП-2 к цепям питания рекомендуется использовать провода сечением не менее 1,5 мм².


Для заземления корпуса ЭНИП-2-...-32 рекомендуется использовать провод сечением не менее $2,5\,$ мм 2 , обжатый кольцевым наконечником с диаметром $4-6\,$ мм (под болт M4).

Подключение источника питания (в зависимости от типа питания АС или DC и диапазона питающего напряжения) осуществлять согласно схемам на рисунке 8.1:


- Подключите фазный/плюсовой провод к контакту L/+;
- Подключите нулевой/минусовой провод к контакту N/-;
- Подключите провод защитного заземления к контакту 壁 .

ЭНИП-2-..-220-..

ЭНИП-2-..-**24**-..

ЭНИП-2-..-24-А2Е0-32

Рисунок 8.1. Схемы подключения ЭНИП-2 к цепям источника (сети) электропитания

Рекомендуется использовать гарантированное электропитание, а также производить выбор источника с возможностью ограничения тока нагрузки.

Для РП и ТП 6...20 кВ рекомендуется использовать ЭНИП-2 с напряжением питания 24 В постоянного тока. Для подстанций класса напряжения 35 кВ и выше рекомендуется использовать гарантированное напряжения питания 220 В переменного тока.

В случае использования напряжения питания 220 В постоянного тока от цепей оперативного тока не рекомендуется подключать большое количество ЭНИП-2 через один питающий кабель длинной более 5 м. Если нет других вариантов питания, то необходимо организовать защиту линии питания от импульсных перенапряжений в

месте установки ЭНИП-2, а также использовать источник питания с ограничением выходного тока.

8.2 Подключение к измерительным цепям

Рекомендуется подключать токовые цепи проводом сечением не менее 2,5 мм², цепи напряжения проводом сечением не менее 1,5 мм². Для удобства обслуживания рекомендуется использовать промежуточные клеммники с возможностью шунтирования токовых цепей, разрыва цепей напряжения.

В зависимости от используемой схемы подключения на этапе настройки ЭНИП-2 с помощью ПО «ES Конфигуратор» установить трех- или четырехпроводную схему.

8.3 Подключение к цепям дискретных сигналов

8.3.1 Для исполнения ЭНИП-2-...-Х1

цепи дискретного ввода

Дискретные сигналы подключать к ЭНИП-2 при условии внешнего питания этих цепей напряжением 20...250 В – т.е. «wet contact».

ЭНИП-2 версии hardware 2 (снято с производства) требует подачи внешнего питания.

ЭНИП-2 версии hardware 3 и новее с с дискретными входами, рассчитанными на 24 В, имеет встроенный источник 24 В= (клемма 20), который можно использовать для питания («смачивания») «сухих» контактов.

Встроенные дискретные входы ЭНИП-2 позволяют подключать 4 или 8 сигналов. При необходимости расширения количества подключаемых сигналов можно использовать модули ввода-вывода ЭНМВ-1.

Наличие в ЭНМВ-1 встроенного источника постоянного напряжения 24 В позволяет подключать как к самому ЭНМВ, так и к ЭНИП-2 дискретные сигналы типа «сухой контакт» (Dry Contact). Таким образом, ЭНИП-2 и ЭНМВ-1 обеспечивают подключение как потенциальных дискретных сигналов, так и «сухих контактов». В качестве примера на рисунке 8.3 показано, как к ЭНИП-2 подключить дискретные сигналы. Не обязательно, но в ряде случаев (дискретные сигналы на территории ОРУ), для повышения помехоустойчивости рекомендуется устанавливать параллельно входам DI сопротивления номиналом 43 кОм или 56 кОм мощностью не менее 2 Вт. Также на рисунке 8.3 показано одновременное подключение дополнительных модулей и подключение к ним дополнительных сигналов (ЭНМВ-1-6/3R).

Напряжение, с помощью которого обрабатываются дискретные сигналы, должно быть в диапазоне: 18...250 В для постоянного тока.

Рекомендуется для ввода сигналов телесигнализации использовать напряжение постоянного тока 24 или 220 В. Для сбора телесигнализации с территории ОРУ использовать модификацию ЭНИП-2 с дискретными входами на напряжение 220 В.

Для небольших объектов (ТП, РТП) рекомендуется использовать постоянное напряжение 24 В, которым удобно одновременно обеспечить питание ЭНИП-2 и цепей телесигнализации (с точки зрения безопасности эксплуатации этот вариант предпочтительней).

Цепи управления

Для выдачи команд телеуправления можно использовать встроенные дискретные выходы (модификации ЭНИП-2-...-11, ЭНИП-2-...-32) или внешние модули вводавывода ЭНМВ-1.

На рисунках 8.2 – 8.8 показаны случаи, когда к ЭНИП-2 подключены внешние модули ЭНМВ-1. В представленных вариантах при осуществлении информационного обмена возможна обработка до 14 дискретных сигналов и выдачи команд управления.

При осуществлении информационного обмена с ЭНИП-2 возможна обработка до 32 дискретных входов или выдача команд телеуправления на 16 объектов (16 коммутационных аппарата).

Для организации передачи двухэлементной информации ТС (двухпозиционные ТС) следует учитывать, что для одного объекта необходимо задействовать пару дискретных входов, например, DI1 и DI2, DI3 и DI4, DI5 и DI6, DI7 и DI8. Недопустимо использовать под один объект дискретные входы из разных пар. На дискретный вход с нечетным номером заводится сигнал «ВКЛ», а на вход с четным номером – сигнал «ВЫКЛ».

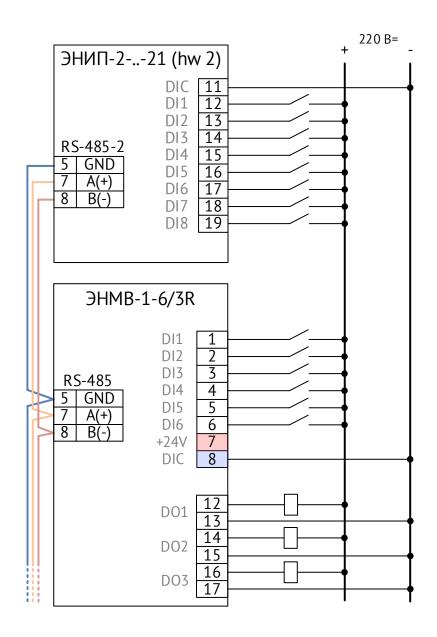


Рисунок 8.2. Пример подключения к ЭНИП-2-...-X1 дискретных сигналов для версии hardware 2.X (выпускалась в 2013г., снято с производства)

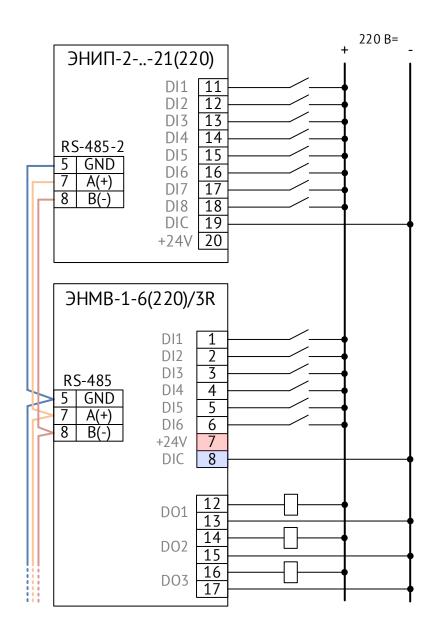


Рисунок 8.3. Схема подключения дискретных сигналов к ЭНИП-2-..-21(220).

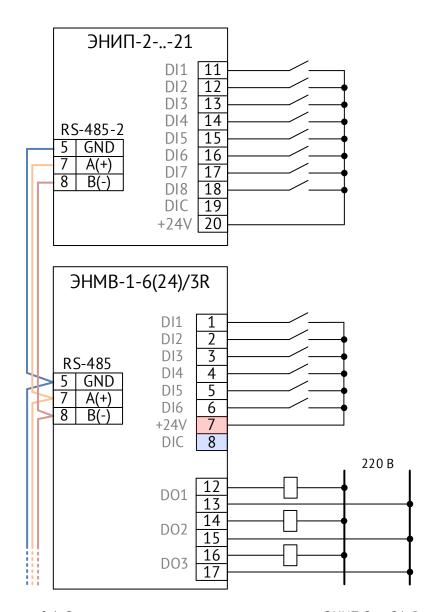


Рисунок 8.4. Схема подключения дискретных сигналов к ЭНИП-2-...-21. Вариант подключения дискретных входов с питанием от встроенного источника 24 В.

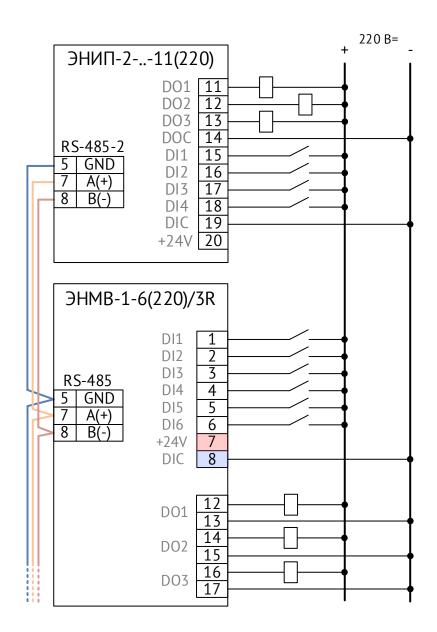


Рисунок 8.5. Схема подключения дискретных сигналов к ЭНИП-2-...-11(220).

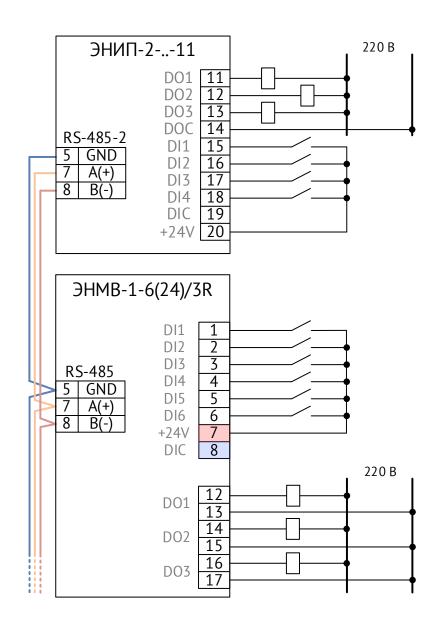
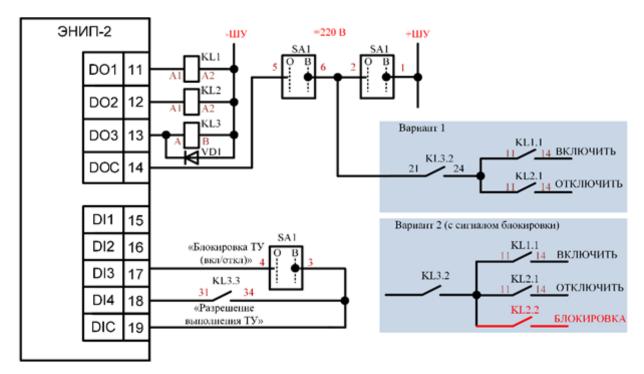


Рисунок 8.6. Схема подключения дискретных сигналов к ЭНИП-2-...-11. Вариант подключения дискретных входов с питанием от встроенного источника 24 В.

Для подачи команд управления на ЭНИП-2-...-11 (встроенные дискретные выходы) необходимо использовать промежуточные реле и рекомендуемую схему подключения.


Рекомендуемые типы промежуточных реле:

- Питание катушки 220 В: <u>PLC-RPT-230UC/21</u>;
- Питание катушки 24 В: <u>RIF-0-RPT-24DC/21</u>.

Рекомендуемая схема включения дискретных выходов ЭНИП-2-...-11 в схему управления коммутационного оборудования электроустановок представлена на рисунке 8.7.

Режим телеуправления коммутационным оборудованием предусматривает обязательный контроль готовности исполнительных цепей, а также возможность блокировки телеуправления. Готовность выполнения телеуправления контролируется по состоянию входа DI настроенного для этого (DI4 на схеме). В случае разрешения телеуправления цепи включения или отключения (контактные группы реле KL1, KL2, подключенных к выходам DO1 или DO2), формируемые рекомендуемой схемой (рисунок 8-7), включены последовательно с дополнительной контактной группой KL3, что исключает несанкционированное контрольного реле коммутационным оборудованием. Подключение к дискретному входу «Пакетный выключатель SA1» используется для подачи питания с шинок управления на схему телеуправления. Также подключение к входу DI3 (или любому другому свободному контактов SA1 входу) позволяет контролировать состояние ключа «местное/дистанционное управление выключателем» контроль должен осуществляться средствами ОИК, SCADA.

Для гашения ЭДС самоиндукции, возникающей при размыкании контактов реле, рекомендуется параллельно реле устанавливать диоды КД105, или аналогичный.

VD1- КД105 (или аналогичный)

Рисунок 8.7. Рекомендуемая схема подключения дискретных выходов ЭНИП-2-...-11 к схеме управления коммутационным оборудованием

Ниже на рисунке 8.8 показаны различные варианты подключения ЭНИП-2-...-X1 к внешним модулям. Ограничения по подключению внешних модулей:

- ЭНИП-2 может суммарно обработать не более 32 дискретных сигналов (1 ТС один дискретный сигнал, 1 объект ТУ два дискретных сигнала);
- Допускается подключать не больше 4 блоков.

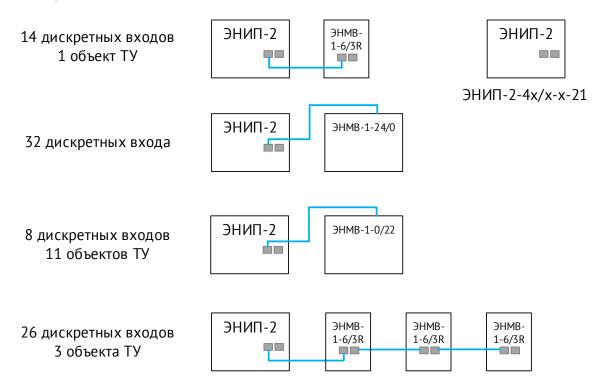


Рисунок 8.8. Примеры схем подключения ЭНИП-2-...-Х1 к внешним модулям

8.3.2 ЭНИП-2-...-32

цепи дискретного ввода (клеммы DI1...DI12)

Дискретные сигналы подключать к ЭНИП-2 при условии внешнего питания этих цепей напряжением 18...36 В (возможно применение по заказу других уровней напряжения питания постоянного напряжения) – т.е. «смачиваемый» контакт (Wet Contact). Состояние входа отображается на индикаторах DI1...DI12.

Встроенные дискретные входы ЭНИП-2 позволяют подключать до 12 сигналов. Встроенный источник 24 В= предназначен для подключения «сухих контактов». Для этого нужно запитать «сухие контакты» от клеммы =24В.

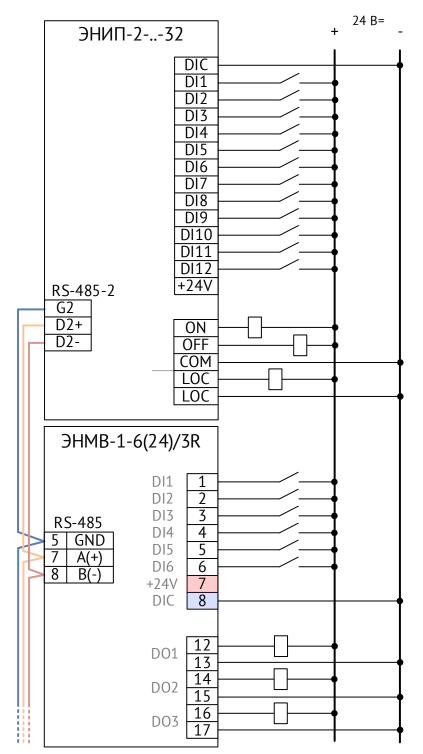


Рисунок 8.9. Схема подключения дискретных сигналов к ЭНИП-2-...-32. На примере вариант подключения дискретных входов с питанием от внешнего источника

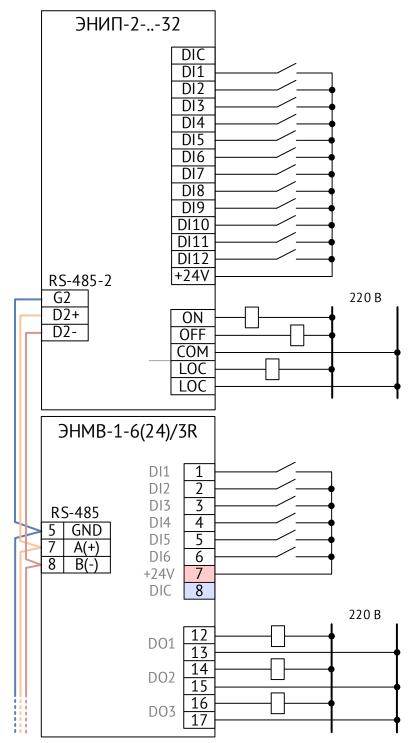


Рисунок 8.10. Схема подключения дискретных сигналов к ЭНИП-2-...-32. На примере вариант подключения дискретных входов с питанием от встроенного источника

цепи управления:

С помощью встроенных релейных выходов и дополнительных внешних блоков – модулей ввода/вывода ЭНМВ-1-X/3R ЭНИП-2 можно использовать для выдачи команд телеуправления – до 16 объектов телеуправления;

К порту RS-485-2 ЭНИП-2 можно подключать до четырех модулей ЭНМВ-1.

Для инициализации обмена между ЭНИП-2 и ЭНМВ-1 необходимо в конфигураторе настроить порт RS-485-2:

- Выбрать в качестве протокола обмена Modbus RTU, настроить скорость, соответствующую ЭНМВ (рекомендуется использовать максимально возможную скорость 115200);
- Настроить внешние устройства, указав типы и связные адреса (в диапазоне 2...254, при этом адрес внешних устройств не должен совпадать с адресом Modbus RTU RS-485-2 (по умолчанию 1)).

После записи этих настроек ЭНИП-2 начнет постоянный обмен данными с ЭНМВ-1 в режиме Master.

Ниже на рисунке 8.11 показаны различные варианты подключения ЭНИП-2 к внешним модулям.

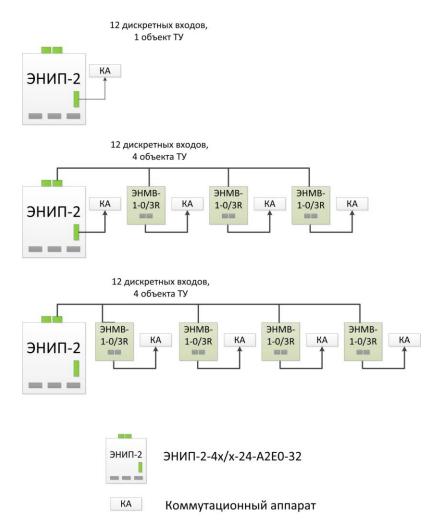


Рисунок 8.11. Схемы подключения ЭНИП-2-...-32 к внешним модулям

8.3.3 Для исполнения ЭНИП-2-...-Х3

цепи дискретного ввода

ЭНИП-2 имеет встроенный источник 24 В=, который используется для питания («смачивания») «сухих» контактов.

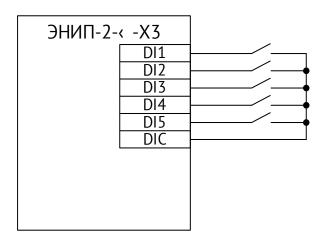


Рисунок 8.12. Схема подключения дискретных сигналов к ЭНИП-2-...-ХЗ

8.4 Подключение к датчикам контроля напряжения

Модификации ЭНИП-2-...-32 позволяет решать задачу контроля напряжения на отходящих кабелях - сборок РУ 0,4 кВ или кабелях 6-20 кВ при подключении через емкостные делители. Каждый вход имеет настраиваемые уставки срабатывания. Факт отработки уставок отражается на светодиодных индикаторах L1, L2, L3 и передается по коммуникационным протоколам в виде телесигнализации. Индикатор горит зелёным — уставка включена, мигает зелёным — срабатывание по понижению напряжения, мигает красным — срабатывание по превышению напряжения. Настройка уставок осуществляется посредством ПО «ES Конфигуратор»

Для повышения надежности и безопасности эксплуатации электроустановок рекомендуется осуществлять подключение цепей 0,4 кВ к входам L1, L2, L3 (наконечники кабелей 0,4 кВ отходящих потребительских фидеров) через сопротивления (например, 200кОм, 1 Вт или 100 кОм, 2 Вт). Сопротивления необходимо устанавливать в точке съема напряжения.

8.5 Подключение системы температурного контроля «Зной»

ЭНИП-2 поддерживает опрос системы бесконтактного температурного контроля «Зной» и передачу до 4 значений температуры. Подключение «Зной» осуществляется к порту RS-485-2. Настройка опроса и передачи данных осуществляется с помощью ПО «ES конфигуратор».

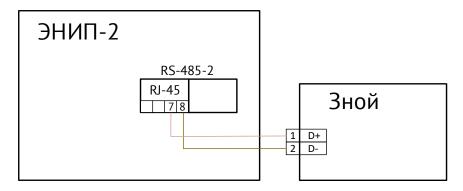


Рисунок 8.13. Подключение устройства Зной

8.6 Подключение индуктивных датчиков

К дискретным сигналам ЭНИП-2 можно подключить внешние датчики. Пример подключения индуктивного датчика PNP-типа приведен на рисунке 8.14.

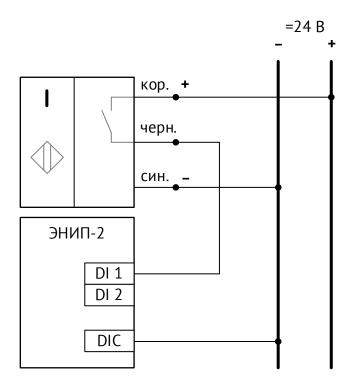


Рисунок 8.14. Пример подключения индуктивных датчиков с PNP-контактом.

8.7 Подключение к внешним модулям индикации

ЭНИП-2-...-X1, ЭНИП-2-...-32 позволяет подключить модуль индикации ЭНМИ к любому порту RS-485. Допускается подключение ЭНМИ к порту RS-485-2 одновременно с ЭНМВ-1. Для этого необходимо:

• Установить у ЭНМИ протокол обмена Modbus RTU Slave;

- Настроить порт RS-485-2 ЭНИП-2 на циклическую передачу (определить интервал передачи кратный 1 с), установить максимально возможную скорость обмена;
- Адресация Modbus регистров ЭНИП-2 должна соответствовать настройкам ЭНМИ (для ЭНМИ с 2015 года адресация регистров с 0);
- Если присвоить указанные выше настройки нескольким ЭНМИ и подключить их к порту RS-485-2, то можно осуществлять передачу данных одновременно нескольким ЭНМИ.

Модуль индикации ЭНМИ выпускается в различных модификациях: со светодиодными индикаторами, монохромным OLED или цветным ЖКИ с сенсорным экраном. ЭНМИ отображает все основные измеряемые и вычисляемые параметры, включая активную и реактивную энергию, частоту, состояние дискретных входов.

Схема подключения модулей индикации ЭНМИ к преобразователю ЭНИП-2 приведена на рисунке А 2.8.

Внешний вид и краткие сведения по ЭНМИ приведены ниже. Следует учитывать, что для корректной работы ЭНМИ необходимо соблюдать условия эксплуатации, указанные в руководстве по эксплуатации ЭНМИ.

Корпус ЭНМИ обеспечивает конструктивное совмещение с ЭНИП-2. Т.е. ЭНИП-2 может быть установлен не только на DIN-рельс, но и в ЭНМИ: ЭНИП-2 вместе с ЭНМИ может использоваться как щитовой прибор.

Разъем порта RS-485-2 совмещенный с питанием (5 В= – 2012 год или 24 В= – с конца 2013 года) для внешних модулей индикации позволяет осуществить подключение и информационных цепей RS-485 и обеспечить питание от ЭНИП-2 модуля ЭНМИ стандартным сетевым патч-кордом. Разрешается подключать питание 5 В= с ЭНИП-2 только на модули индикации модификации ЭНМИ-4-5-2, ЭНМИ-5-5-2. Не рекомендуется использовать питание ЭНИПа при длине кабеля более 20 метров.

Ниже представлены два варианта установки ЭНИП-2 и ЭНМИ в корпусе 120x120x49 мм (ВхШхГ):

На дверь релейного отсека или панель управления отдельно от ЭНИП-2

Рисунок 8.15. Отдельная установка ЭНИП-2 от модуля индикации ЭНМИ

• На дверь релейного отсека или панель управления вместе с ЭНИП-2

Рисунок 8.16. Совмещенная установка ЭНИП-2 с модулем индикации ЭНМИ, как щитового прибора

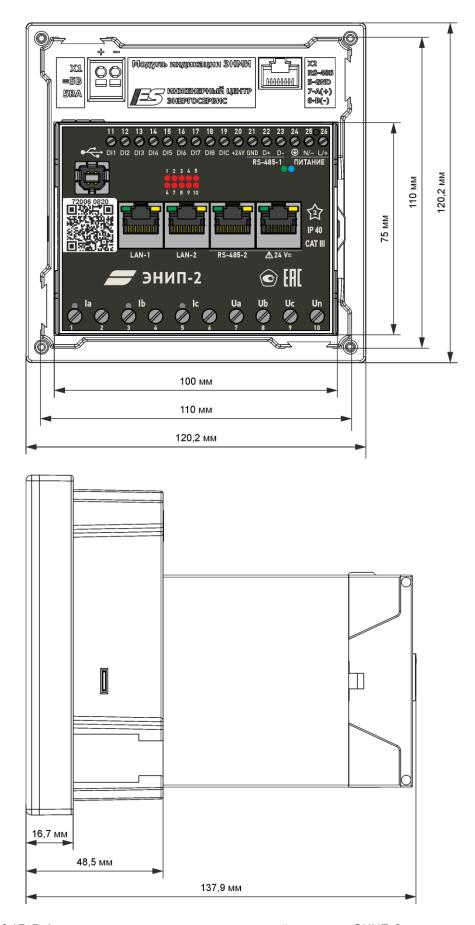


Рисунок 8.17. Габаритные размеры и схема совмещенной установки ЭНИП-2 с модулем индикации ЭНМИ, как щитового прибора

ЭНМИ-3

Светодиодные семисегментные индикаторы, RS-485, управление индикацией — кнопочное. Два варианта установочных размеров.

3HMU-3 EX KM

A 5 9 5 5 W

Hz

DI

B 9 6 6 var

cos

φ

VA

VA

V

U

L

V

X

X

X

96 × 96 × 86 MM

Кнопки выбора режима отображения и управления яркостью

120 × 120 × 49 mm

ЭНМИ-7

Монохромный OLED-дисплей, RS-485.

ЭНМИ-4м, ЭНМИ-4е

Цветной сенсорный дисплей, RS-485 (ЭНМИ-4м) или 100Base-TX (ЭНМИ-4е).

Два варианта установочных размеров и диагонали дисплея (7" и 4.3").

146 × 226 × 55 MM

120 × 120 × 49 mm

Примеры экранных форм

Все модификации имеют регулировку яркости, возможность конфигурирования с помощью программного обеспечения, в том числе задания коэффициентов масштабирования, критической зоны по току или по напряжению.

ЭНИП-2 имеет в настройках коэффициенты трансформации трансформатора тока и трансформатора напряжения. Это коэффициенты могут быть использованы для того, чтобы ЭНМИ, считывая эти коэффициенты, мог отображать параметры с учетом коэффициентов трансформации.

8.8 Подключение к информационным цепям

Примечание: Для защиты интерфейсов RS-485 рекомендуется использовать устройства защиты от перенапряжения ESP-485-X, где X – количество каналов (ESP-485 выпускаются на один, или два канала).

- **к магистралям RS-485** порты 1, 2, 3 (в зависимости от конфигурации системы телемеханики и настройки портов), используя соединительные провода, кабель типа «витая пара», распределительные розетки или клеммники с соблюдением магистральной топологии шина RS-485;
- Подключение осуществлять в соответствии со схемами, приведенными в настоящем РЭ;
- При распределении ЭНИП-2 по шинам RS-485 необходимо учитывать рекомендации по количеству подключаемых на каждую шину преобразователей для соблюдения требуемых параметров по циклу опроса;
- Для сбора данных с ЭНИП-2 по портам 1, 2, 3 допускается применение как прямых магистралей RS-485 «УСД ЭНИП-2», так и сети сбора построенной на базе сетевых коммуникационных устройств для организации асинхронных последовательных портов через сеть Ethernet (в этом случае необходимо учитывать задержки времени, вносимые коммуникационным оборудованием в циклы опроса ЭНИП-2).
- **к сети Ethernet** используя промышленные коммутаторы, объединенные в локальную технологическую сеть с кольцевой или иной топологией (рекомендуется применять экранированные кабели и патч-корды).

9 Области применения

9.1 Системы телемеханики

ЭНИП-2 могут быть использованы в качестве источников данных распределенных систем телемеханики объектов различного уровня: систем телемеханики распределительных пунктов, подстанций, электростанций.

Сбор данных с ЭНИП-2 может осуществляться через КП телемеханики, с использованием серверов телемеханики (RTU) или напрямую в сервера АСУ ТП (SCADA).

В настоящем руководстве в качестве примера приводится использование преобразователей ЭНИП-2 совместно с КП ТМ ЭНКС-3м, ЭНКМ-3 производства ООО «Инженерный центр «Энергосервис».

Для построения системы телемеханики на базе ЭНИП-2 необходимо определить места размещения оборудования: ЭНИП-2 на панелях управления ОПУ, в шкафах учета или релейных отсеках ячеек ЗРУ, КРУН, ЭНКС-3м/ЭНКМ-3 – в шкафу или стойке телемеханики.

В соответствии со схемами, приведенными в настоящем РЭ необходимо произвести подключение ЭНИП-2 к цепи электропитания.

9.2 Цифровая подстанция

Основное назначение ЭНИП-2 в рамках цифровой подстанции – реализация функций контроллера, используемого для осуществления измерений основных параметров сети на контролируемом присоединении, контроля состояния коммутационных аппаратов и защит, а также выдачи команд управления.

Благодаря соответствию МЭК 61850, в частности поддержке протоколов передачи данных MMS (Manufacturing Message Specification) и GOOSE (Generic Object-Oriented Substation Event) ЭНИП-2-...-X1 готов к интеграции в подстанционную шину (Substation Bus).

Приложение Д описывает совместимость ЭНИП-2 с МЭК 61850 в различных аспектах (в настоящий момент отдельными приложениями к настоящему РЭ представлены следующие разделы: MICS - Model Implementation Conformance Statement, PICS - Protocol Implementation Conformance Statement, PIXIT - Protocol Implementation Extra Information for Testing, TICS - TISSUES Implementation Conformance Statement).

Коммуникационные возможности ЭНИП-2-...-Х1 в части передачи данных по протоколам стандарта МЭК 61850 обеспечивают:

- передачу данных по протоколу MMS (сервер);
- публикация GOOSE (до 8);
- подписка на GOOSE (до 32).

Совмещение возможностей публикации и подписки на GOOSE сообщения с программируемой логикой позволяет использовать ЭНИП-2 для реализации оперативных блокировок.

9.3 СМПР

Основной функцией интеллектуальных электронных устройств ЭНИП-2-...-ХЗ являются измерения синхронизированных векторов (синхрофазоров) токов и напряжений. Устройства ЭНИП относятся к устройствам синхронизированных векторных измерений (PMU, Phasor Measurement Unit) и могут быть использованы в системах мониторинга переходных режимов СМПР (WAMS, Wide Area Measurement System).

Для сбора данных должны быть использованы специализированные устройства сбора данных PDC (Phasor Data Concentrator). Стандартом IEEE C37.118-2001 предусмотрено использование специализированного протокола обмена данными между PMU и PDC – IEEE C37.118.2-2011. В ЭНИП дополнительно предусмотрено использование для передачи данных протоколов МЭК 60870-5-104/101, Modbus.

Для синхронизации встроенных часов реального времени ЭНИП с необходимой точностью их хода (не хуже 1 мкс) необходимо использовать внешний или внутренний источник синхронизации.

Если на объекте (электростанция, подстанция, распределительный пункт) устанавливается только одно устройствам синхронизированных векторных измерений, то нецелесообразно использовать устройство сбора данных PDC. В этом случае предпочтительно использование модификаций ЭНИП со встроенным GPS/ГЛОНАСС-приемником.

Для построения системы сбора данных для СМПР необходимо определить места размещения оборудования: ЭНИП на панелях управления или релейных отсеках ячеек, PDC и БКВ – в шкафах-стойках или на панелях управления.

В соответствии со схемами, приведенными в настоящем РЭ необходимо произвести подключение ЭНИП:

- к измерительным цепям (рекомендуется использовать промежуточные клеммники с возможностью шунтирования токовых цепей, разрыва цепей напряжения) для модификаций ЭНИП-2-45(41) или к шине процесса согласно МЭК 61850-9-2 для модификаций ЭНИП-2-0;
- к цепям сигнализации;
- к цепям питания использовать гарантированное электропитание, обеспечить возможность снятия напряжения питания для проведения обслуживания и ремонта ЭНИП;
- к сети Ethernet используя промышленные коммутаторы, объединенные в локальную технологическую сеть с кольцевой топологией, соединенные между собой и преобразователями ЭНИП с применением экранированных кабелей и патч-кордов.

В соответствии со схемами, приведенными в настоящем РЭ необходимо произвести подключение информационных шин от ЭНИП к РDC.

10 Диагностика состояния ЭНИП-2

ЭНИП-2-...-X1 и ЭНИП-2-...-32 обеспечивает постоянную самодиагностику состояния. При необходимости диагностическая информация может быть передана по интерфейсам. В частности, в рамках протоколов Modbus RTU/TCP, ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004 имеется возможность получения регистра «Диагностическое слово». Данный регистр содержит текущий набор состояний самодиагностики. Также диагностика может быть настроена для передачи в виде ТС по любому из протоколов.

Значение «диагностическо го слова»	Расшифровка состояния		
0x0001	Неисправность АЦП/Отсутствие внешнего питания		
0x0002	Неисправность Ethernet		
0x0004	Неисправность внутренних часов		
0x0008	Напряжение батареи меньше 2,5 В		
0x0010	Более 3 неудачных попыток авторизации в течение минуты, авторизация заблокирована		
0x0020*	Нет связи с CPU		
0x0040	Отсутствует синхронизация времени (если настроен период актуальности синхронизации)		
0x0080	Ошибка опроса внешних устройств		
0x0100	Неисправность внешнего ТУ		
0x0200*	Нет связи по интерфейсу LAN1 (если включено резервирование PRP или RSTP)		
0x0400*	Нет связи по интерфейсу LAN2 (если включено резервирование PRP или RSTP)		

^{* -} только для ЭНИП-2 с 2 портами Ethernet;

Для передачи слова по протоколам МЭК 60870-5-101/104 необходимо для данного регистра включить спорадическую передачу.

Дополнительно отдельным регистром ЭНИП-2 передает значение температуры внутри корпуса, что также может быть использовано в целях диагностики состояния оборудования.

Следует отметить, что при передаче данных в рамках протоколов МЭК 60870-5-101/104, имеющиеся для каждого передаваемого элемента информации описатели качества (IV, NT) позволяют также правильно оценивать и обрабатывать эти данные. Бит IV, принимающий значения Invalid/Valid в случае Invalid используется для оповещения получателя информации о том, что данное измерение/состояние не является корректным и не может быть использовано. Бит NT (Not Topical/Topical) свидетельствует о том, является ли значение актуальным: оно не является актуальным, если не было обновлено в течение указанного интервала времени или оно не доступно.

11 Маркировка и пломбирование

11.1 Маркировка

Маркировка ЭНИП-2 содержит следующую информацию:

- наименование прибора «преобразователь измерительный многофункциональный ЭНИП-2», логотип «ЭНИП-2»;
- условное обозначение преобразователя;
- логотип предприятия-изготовителя;
- порядковый номер и год изготовления;
- номинальное значение измеряемого напряжения;
- номинальное значение измеряемого тока;
- номинальная частота измеряемых параметров;
- обозначение клемм для подключения питания «Питание»;
- обозначение интерфейсов;
- маркировка контактов клемм для подключения цепей дискретных сигналов;
- маркировка контактов клемм для подключения измеряемых напряжений и токов;
- вид питания, номинальное значение напряжения и частоты питающей сети, максимальная мощность в ВА;
- изображение Знака утверждения типа;
- изображение Знаков соответствия ЕАС и СЕ;

Поверительное клеймо в виде наклейки наносится на верхнюю или боковую часть корпуса ЭНИП-2 в зависимости от исполнения.

Содержание маркировки транспортной тары, места и способы ее нанесения соответствуют:

- для транспортной тары ГОСТ 14192-96;
- для потребительской тары ГОСТ 9181-74.

Транспортная маркировка содержит манипуляционные знаки «Хрупкое. Осторожно», «Беречь от влаги», «Верх», «Ограничение температуры» от минус 50 до плюс 70 °С.

11.2 Пломбирование

Пломбирование преобразователей ЭНИП-2 производится наклейками «Не вскрывать! Гарантия».

Места расположения наклеек «Гарантия» – стык соединения корпуса и верхней крышки преобразователя.

12 Транспортировка и хранение

Преобразователи ЭНИП-2 транспортируются в соответствии с требованиями ГОСТ 22261-94 всеми видами транспорта в крытых транспортных средствах (железнодорожным, автомобильным, водным транспортом в трюмах, в самолетах - в герметизированных отсеках) при температуре от минус 50 до плюс 70 °С и относительной влажности воздуха 95 % при температуре 35 °С.

Допускается транспортирование преобразователей ЭНИП-2 в контейнерах и пакетами. Средства пакетирования - по ГОСТ 24597.

При железнодорожных перевозках допускаются мелкие малотоннажные и повагонные виды отправок в зависимости от заказа.

Хранение преобразователей ЭНИП-2 на складах предприятия-изготовителя (потребителя) - по ГОСТ 22261-94.

13 Упаковка

Преобразователи ЭНИП-2 поставляются в индивидуальной и транспортной таре.

В упаковку укладывается 1 комплект преобразователя ЭНИП-2, указанный в разделе 4. Типовые размеры индивидуальной упаковки:

- 125x125x175 мм для модификации ЭНИП-2-...-X1;
- 165x130x75 мм для модификации ЭНИП-2-...-32.

Количество преобразователей ЭНИП-2, укладываемых в транспортную тару, габаритные размеры, масса нетто и брутто – в зависимости от заказа. Типовая транспортная тара:

- гофрокороб размерами 375x350x250 мм, вмещающий 12 индивидуальных упаковок 125x125x175 мм;
- гофрокороб размерами 345x255x135 мм, вмещающий 4 индивидуальных упаковки 125x125x175 мм.

Масса преобразователей ЭНИП-2 в зависимости от исполнения приведена в таблице 13.1.

Таблица 13.1

Исполнение	Масса нетто, не более, кг	Масса брутто, не более, кг	
преобразователей ЭНИП-2			
ЭНИП-2X1	0,55	0,70	
ЭНИП-2X2	0,50	0,65	
ЭНИП-2Х3	0,85	1,00	

Приложение A1. Схемы подключения преобразователей ЭНИП-2-...-X1, ЭНИП-2-...-X3

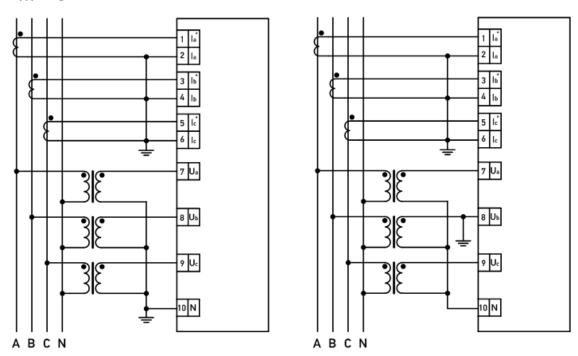


Рисунок A1.1. Схемы подключения ЭНИП-2-4X/100-... для трехфазной четырехпроводной сети: 4LN3 или 4LL3 (ЭНИП-2 настроен на схему «4-проводная»)

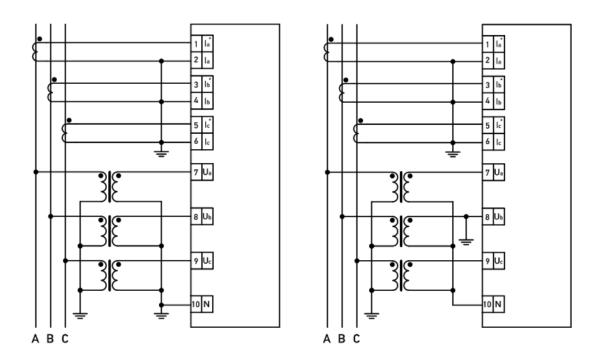


Рисунок A1.2. Схемы подключения ЭНИП-2-4X/100-...-X1 для трехфазной трехпроводной сети: 4LN3 или 4LL3 (ЭНИП-2 настроен схему «4-проводная»)

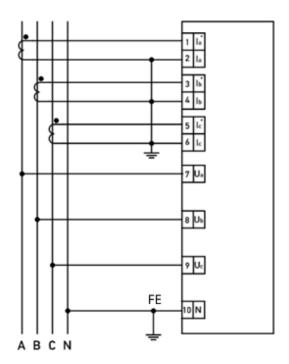


Рисунок А1.3. Схема подключения ЭНИП-2-4X/400-... и ЭНИП-2-4X/690-... для трехфазной четырехпроводной сети 230 (400) В или 400 (690) В: 4LN3 или 4LL3 (ЭНИП-2 настроен на схему «4-проводная»)

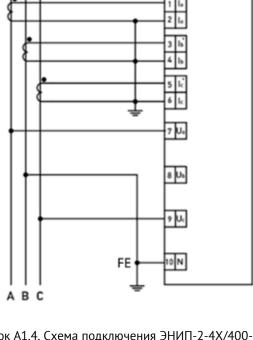


Рисунок А1.4. Схема подключения ЭНИП-2-4X/400-... и ЭНИП-2-4X/690-... для трехфазной трехпроводной сети 230 (400) В или 400 (690) В: 4LN3 или 4LL3 (ЭНИП-2 настроен на схему «3-проводная»)

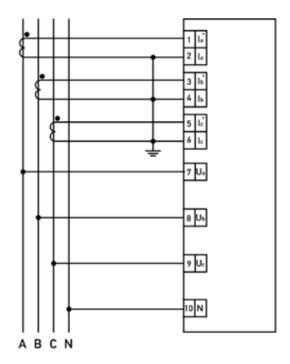


Рисунок А1.5. Схема подключения ЭНИП-2-4X/400-... и ЭНИП-2-4X/690-... версия hw.5 для трехфазной четырехпроводной сети 230 (400) В или 400 (690) В: 4LN3 или 4LL3 (ЭНИП-2 настроен на схему «4-проводная»)

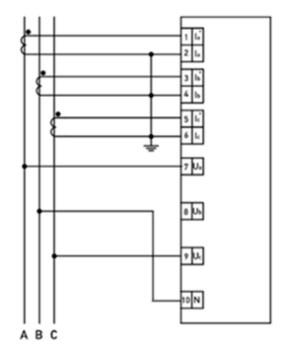
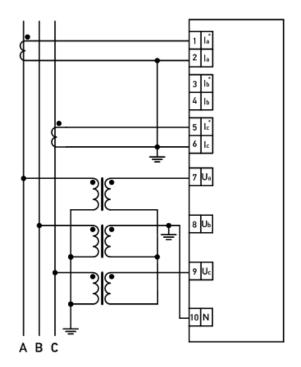
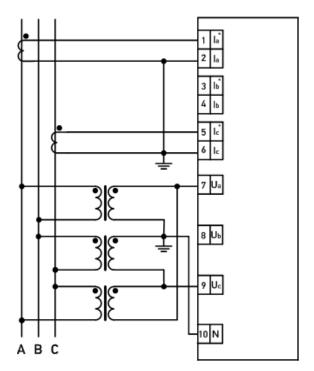




Рисунок A1.6. Схема подключения ЭНИП-2-4X/400-... и ЭНИП-2-4X/690-... версия hw.5 для трехфазной трехпроводной сети 230 (400) В или 400 (690) В: 4LN3 или 4LL3 (ЭНИП-2 настроен на схему «3-проводная»)

ТН соединены по схеме «звезда»

ТН соединены по схеме «треугольник»

Рисунок A1.7. Схема подключения ЭНИП-2-4X/100-...-X1 для трехфазной трехпроводной сети с тремя трансформаторами напряжения: 3LL2 (ЭНИП-2 настроен на схему «3-проводная»)

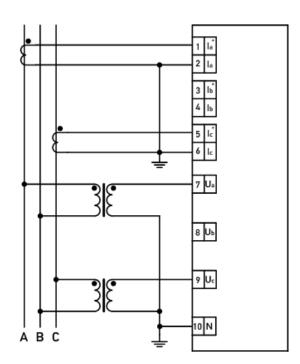


Рисунок A1.8. Схема подключения ЭНИП-2-4X/100-X-X-X1 для трехфазной трехпроводной сети с двумя TH: 3OP2 (ЭНИП-2 настроен на схему «3-проводная»)

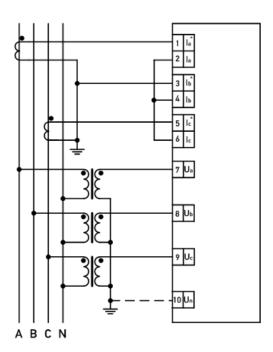


Рисунок A1.9. Схема подключения ЭНИП-2-4X/100-...-X1 для трехфазной трехпроводной сети с тремя трансформаторами напряжения без нейтрали, двумя трансформаторами тока: 4LN2 (ЭНИП-2 настроен на схему «4-проводная»)

Не рекомендуется использовать данную схему подключения, так как не гарантирована точность измерения фазных напряжений и мощностей. Схема подключения может быть использована только в исключительных случаях, когда необходимо измерять 3 фазных тока, 3 фазных напряжения, 3 фазных мощности, но имеются ограничения по подключению: цепи напряжения представлены тремя проводами без нейтрального провода, цепи тока – двумя трансформаторами тока.

Приложение А2. Схемы подключения преобразователей ЭНИП-2-...-32

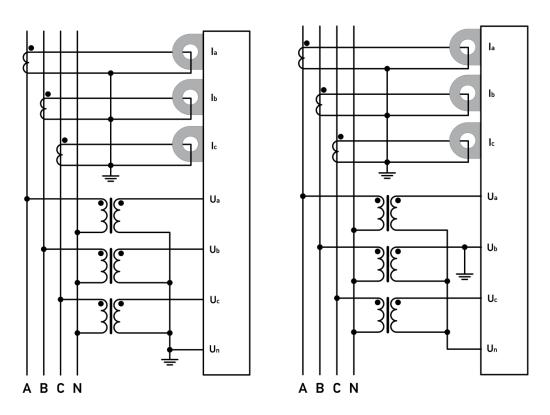
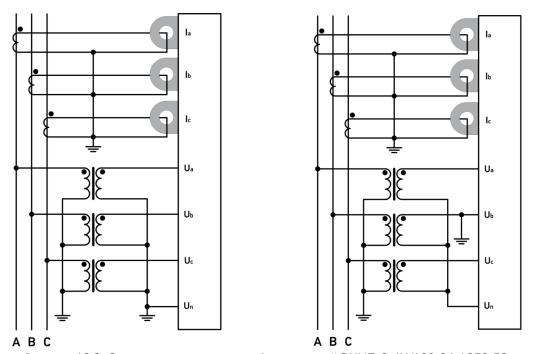
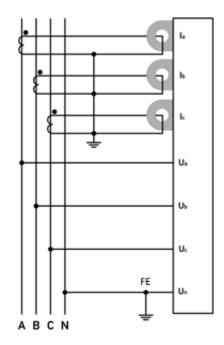
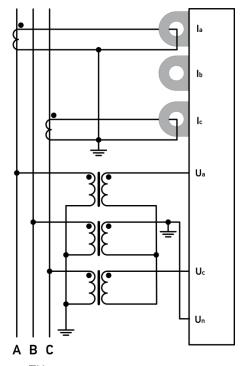


Рисунок A2.1. Схема подключения преобразователей ЭНИП-2-4X/100-24-A2E0-32 для трехфазной четырехпроводной сети: 4LN3 или 4LL3 (ЭНИП-2 настроен на схему «4-проводная»)


Рисунок A2.2. Схема подключения преобразователей ЭНИП-2-4X/100-24-A2E0-32 для трехфазной трехпроводной сети: 4LN3 или 4LL3 (ЭНИП-2 настроен на схему «4-проводная»)

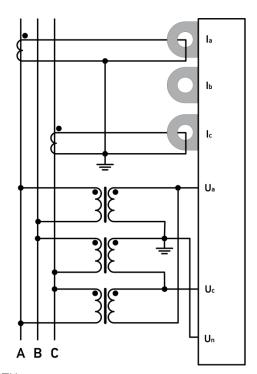

Ia Ib Ic Uc Uc Un

Рисунок A2.3. Схема подключения преобразователей ЭНИП-2-4X/400-24-A2E0-32 для трехфазной четырехпроводной сети 230 (400) В: 4LN3 или 4LL3 (ЭНИП-2 настроен на схему «4-проводная»)

Рисунок A2.4. Схема подключения преобразователей ЭНИП-2-4X/100-24-A2E0-32 для трехфазной трехпроводной сети с двумя ТН: 3OP2 (ЭНИП-2 настроен на схему «3-проводная»)

ТН соединены по схеме «треугольник»

Рисунок A2.5. Схема подключения преобразователей ЭНИП-2-4X/100-24-A2E0-32 для трехфазной трехпроводной сети с тремя трансформаторами напряжения: 3LL2 (ЭНИП-2 настроен на схему «Зпроводная»)

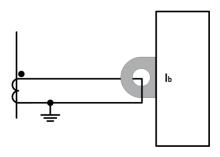


Рисунок A2.6. Схема подключения преобразователей ЭНИП-2-11/0-24-A2E0-32 и ЭНИП-2-15/0-24-A2E0-32 для измерения тока фазы

Приложение А3. Схемы подключения интерфейсов

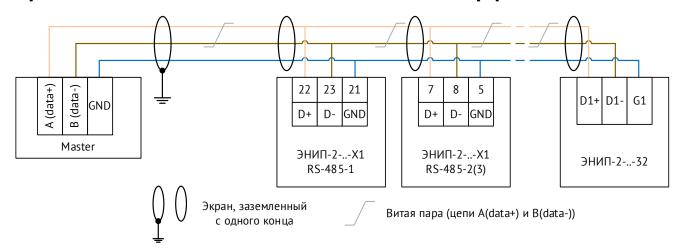
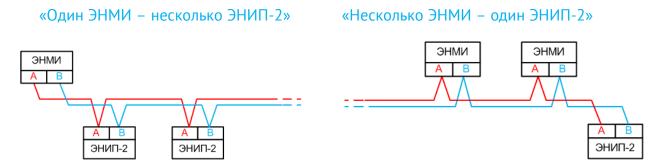
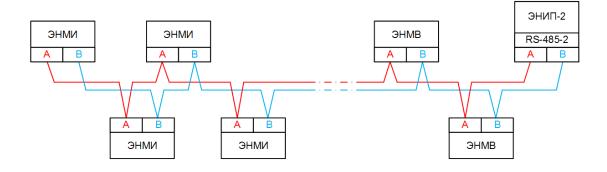




Рисунок АЗ.1. Схема подключения интерфейсов RS-485 ЭНИП-2-..-X1 и ЭНИП-2-..-32

Схемы подключения модулей индикации ЭНМИ.

«Несколько ЭНМИ – несколько ЭНМВ – один ЭНИП-2»

RS-485-2 поддерживает подключение внешних модулей ЭНМВ, если необходимо подключить на этот порт еще и модули ЭНМИ, то нужно на порту RS-485-2 настроить циклическую передачу, а ЭНМИ перевести в пассивный прием по Modbus.

ЭНИП-2-..-Х1 ЭНИП-2-..-Х1 RS-485-2 RS-485-2 +24V 1 +24V 2 3 <u>0V</u> 3 **RJ-45** 4 <u>0V</u> 4 5 GND GND 6 A(+)A(+)8 B(-) ЭНМИ ЭНМИ RS-485 RS-485 +24V 1 2 +24V 0V **RJ-45 RJ-45** 4 0V X1 X1 5 GND GND 6 A(+)A(+) 8 8 B(-) B(-Питание Питание +24V +24V В X2 X2 24 <u>0V</u>

«Один ЭНМИ – один ЭНИП-2»

Рисунок АЗ.2. Схемы подключения индикатора ЭНМИ к ЭНИП-2

ЭНИП-2 может конструктивно объединятся с ЭНМИ. ЭНМИ подключается к ЭНИП-2 стандартным сетевым патч-кордом RJ45/RJ45, через который также получает питание 24 В= от ЭНИП-2. Не рекомендуется использовать питание ЭНМИ от ЭНИП-2 при длине кабеля более 20 м.

Приложение Б. ЭНИП-2: протокол связи Modbus

Общие сведения

В настоящем приложении описана реализация протокола Modbus (Modbus - это торговая марка, принадлежащая компании Schneider Electric), используемого для обмена данными между ЭНИП-2 и контроллерами/серверами автоматизированных систем. Приложение содержит всю необходимую информацию для разработки стороннего программного обеспечения, используемого для связи с ЭНИП-2.

Для непосредственного знакомства с основами протокола Modbus необходимо скачать руководство «Modicon Modbus Protocol Reference Guide» с сайта www.modbus.org.

Способы организации обмена по протоколу Modbus

В режиме Modbus RTU ЭНИП-2 может обмениваться данными как через имеющиеся порты RS-485, так и с помощью порта Ethernet.

В режиме Modbus TCP ЭНИП-2 может обмениваться по 4 сокетам порта Ethernet.

Адрес

Поле адреса содержит назначенный адрес и может иметь значения h01 – hFF (1-254). Адрес h00 является широковещательным, на запрос по адресу h00 и отвечают все устройства, находящиеся на связи. Адрес hFF (255) также является широковещательным, на запросы по данному адресу приборы не отвечают, но исполняют команды.

Поддерживаемые функции

Function code	Функция	Описание
h01	read coil	
h02	read discrete inputs	Чтение дискретных данных
h03	read holding registers	Hanna navananni
h04	read input registers	Чтение измерений
h05	write single coil	Телеуправление
h06*	write single register	Сброс, фиксация данных и т.п.
h14*	read file record	Чтение записей
h64*		Conductivio konstitut and konductiviono postitud
h65*		Сервисные команды для конфигурирования
h66*		Считывание энергий

Примечания: * - функции доступны только для модификаций ЭНИП-2-...-X1, ЭНИП-2-...-32 h66 считывание энергий с регистров 00(полчаса), 01(сутки), 02(месяц), 03(текущая), 04(всё вместе). В ответе: Wp+, Wp-, Wq+, Wq- и timestamp в формате int32.

Пример запроса значений энергии за последние 30 мин.: 01 66 00 00 Е1 С7

Исключения ответов

ЭНИП-2 отвечает указанными ниже ответами при получении ошибки в запросе.

В ответном сообщении старший бит кода функции устанавливается в 1.

Реализованы следующие коды исключений ответов:

- 01 неверная функция
- 02 неправильный адрес параметра
- 03 недопустимое значение параметра
- 04 неисправность устройства

Аналоговые данные:

• Масштабированные величины

К масштабированным относятся параметры с типами данных short (2 байта) и long (4 байта).

Для перевода масштабируемых величин необходимо значение регистра умножить на квант соответствующей величины:

		Величина кванта				
Квант	Описание, единица измерения	Іном = 5	A		Іном = 1 А	
NBanı	Описание, единица измерения	Ином.ф	Ином.ф	Ином.ф	Uном.ф =	
		= 57,7	= 230	= 400	57,7	
1	Квант тока, А	0,001			0,0002	
U	Квант напряжения, В	0,01	0,04	0,08	0,01	
P/Q/S/ W	Квант мощности, энергии*, Вт(/ч)/Вар(/ч)/ВА	0,1	0,4	0,8	0,02	
F	Квант частоты с 3 десятичными знаками, Гц	0,001				
Г	Квант частоты с 2 десятичными знаками, Гц	0,01				
cosф, tgф	Квант соѕф, tgф	0,001				
ф	Квант ф	0,01				

^{*} Обратите внимание, что энергия так же является масштабированной величиной. Для её приведения, требуется домножить полученное значение на вес кванта и коэффициент трансформации;

• Величины в формате с плавающей запятой (float)

Регистры содержат значения в форме мантиссы и показателя степени. Представление утверждено в стандарте IEEE 754.

Адреса регистров нумеруются в диапазоне от 0 до 59999 (с 60000 по 65535 – регистры, зарезервированные под служебную информацию)

С помощью ПО «ES Конфигуратор» можно настроить адресацию регистров отличную от адресации по умолчанию, также с помощью данного ПО можно менять порядок следования регистров. В ПО «ES Конфигуратор» имеются предварительно настроенные варианты адресации.

• Адресация по умолчанию для модификаций ЭНИП-2-...-X1, ЭНИП-2-...-32:

Смеще		Адрес по	Число	Значение регистра	Тип регистра			
dec	hex	умолчанию	СЛОВ	· · ·	тип регистра			
Целые значения, RMS (быстрые/усредненные)								
0	0x00	0	1	Ua	unsigned short			
1	0x01	1	1	Ub	unsigned short			
2	0x02	2	1	Uc	unsigned short			
3	0x03	3	1	U фазное среднее	unsigned short			
4	0x04	4	1	Uab	unsigned short			
5	0x05	5	1	Ubc	unsigned short			
6	0x06	6	1	Uca	unsigned short			
7	0x07	7	1	U линейное среднее	unsigned short			
8	0x08	8	1	la	unsigned short			
9	0x09	9	1	Ib	unsigned short			
10	0x0A	10	1	Ic	unsigned short			
11	0x0B	11	1	I средний	unsigned short			
12	0x0C	12	1	Pa	short			
13	0x0D	13	1	Pb	short			
14	0x0E	14	1	Pc	short			
15	0x0F	15	1	Р суммарная	short			
16	0x10	16	1	Qa	short			
17	0x11	17	1	Qb	short			
18	0x12	18	1	Qc	short			
19	0x13	19	1	Q суммарная	short			
20	0x14	20	1	Sa	unsigned short			
21	0x15	21	1	Sb	unsigned short			
22	0x16	22	1	Sc	unsigned short			
23	0x17	23	1	S суммарная	unsigned short			
Целые	значени	ія, первая гарм	оника (бь	істрые/усредненные)				
24	0x18	24	1	Ua1	unsigned short			
25	0x19	25	1	Ub1	unsigned short			
26	0x1A	26	1	Uc1	unsigned short			
27	0x1B	27	1	U1 фазное среднее	unsigned short			
28	0x1C	28	1	Uab1	unsigned short			
29	0x1D	29	1	Ubc1	unsigned short			
30	0x1E	30	1	Uca1	unsigned short			
31	0x1F	31	1	U1 линейное среднее	unsigned short			
32	0x20	32	1	la1	unsigned short			

Смеще	ние	Адрес по	Число	Zuguouwo poruczna	Tur posucena
dec	hex	умолчанию	слов	Значение регистра	Тип регистра
33	0x21	33	1	lb1	unsigned short
34	0x22	34	1	lc1	unsigned short
35	0x23	35	1	I1 средний	unsigned short
36	0x24	36	1	Pa1	short
37	0x25	37	1	Pb1	short
38	0x26	38	1	Pc1	short
39	0x27	39	1	Р1 суммарная	short
40	0x28	40	1	Qa1	short
41	0x29	41	1	Qb1	short
42	0x2A	42	1	Qc1	short
43	0x2B	43	1	Q1 суммарная	short
44	0x2C	44	1	Sa1	unsigned short
45	0x2D	45	1	Sb1	unsigned short
46	0x2E	46	1	Sc1	unsigned short
47	0x2F	47	1	S1 суммарная	unsigned short

Косинусы, частота, показатели качества, энергия, кванты, коэффициенты, температура, ТС, метка времени, резерв

	m, peser				
48	0x30	48	1	угол ф, фаза А	short
49	0x31	49	1	угол ф, фаза В	short
50	0x32	50	1	угол ф, фаза С	short
51	0x33	51	1	угол ф, общий	short
52	0x34	52	1	F	unsigned short
				UO - напряжение нулевой	
53	0x35	53	1	последовательности	unsigned short
				U1 - напряжение прямой	
54	0x36	54	1	последовательности	unsigned short
				U2 - напряжение обратной	
55	0x37	55	1	последовательности	unsigned short
				KuU - коэффициент несимметрии по	
56	0x38	56	1	напряжению	unsigned short
				KdU - коэффициент искажения по	
57	0x39	57	1	напряжению	unsigned short
58	0x3A	58	1	10 - ток нулевой последовательности	unsigned short
59	0x3B	59	1	I1 - ток прямой последовательности	unsigned short
60	0x3C	60	1	12 - ток обратной последовательности	unsigned short
				Kul - коэффициент несимметрии по	
61	0x3D	61	1	току	unsigned short
62	0x3E	62	1	Kdl - коэффициент искажения по току	unsigned short
				THD - коэффициент гармонических	
63	0x3F	63	1	искажений	short
64	0x40	64	2	WP+ энергия активная, потребленная	unsigned long
66	0x42	66	2	WP- энергия активная, возвращенная	unsigned long
				WQ+ энергия реактивная,	unsigned long
68	0x44	68	2	потребленная	ansigned tong
				WQ- энергия реактивная,	unsigned long
70	0x46	70	2	возвращенная	,
72	0x48	72	2	ТС - состояние ТУ/ТС, служебный	unsigned long
74	0x4A	74	2	Time - секунды UTC, внутреннее время	unsigned long
76	0x4C	76	1	MS - миллисекунды	unsigned short
77	0x4D	77	1	Т - температура внутри корпуса	short

Смеще	шио	Адрес по	Число		
dec	hex	умолчанию	СЛОВ	Значение регистра	Тип регистра
uec	TICA	умолчанию	СЛОВ	KU - коэффициент трансформации по	
78	0x4E	78	1	напряжению	unsigned short
70	OXTL	70		KI - коэффициент трансформации по	unsigned short
79	0x4F	79	1	току	unsigned short
80	0x50	80	1	QU - квант напряжение	unsigned short
81	0x51	81	1	OI - квант тока	unsigned short
82	0x52	82	1	Резерв	unsigned short
83	0x53	83	1	Резерв	
		ия, только для 3			
84	0x54	84	1	UL1	unsigned short
85	0x55	85	1	UL2	unsigned short
86	0x56	86	1	UL3	unsigned short
87	0x57	87	1	Резерв	
88	0x58	88	1	Резерв	
89	0x59	89	1	Диагностическое слово	short
90	0x5A	90	1	Резерв	
91	0x5B	91	1	Резерв	
Значен	ия с пла	вающей запят	ой, RMS (б	ыстрые/усредненные)	
92	0x5C	92	2	Ua	float
94	0x5E	94	2	Ub	float
96	0x60	96	2	Uc	float
98	0x62	98	2	U фазное среднее	float
100	0x64	100	2	Uab	float
102	0x66	102	2	Ubc	float
104	0x68	104	2	Uca	float
106	0x6A	106	2	U линейное среднее	float
108	0x6C	108	2	la	float
110	0x6E	110	2	Ib	float
112	0x70	112	2	Ic	float
114	0x72	114	2	I средний	float
116	0x74	116	2	Pa	float
118	0x76	118	2	Pb	float
120	0x78	120	2	Pc	float
122	0x7A	122	2	Р суммарная	float
124	0x7C	124	2	Qa	float
126	0x7E	126	2	Qb	float
128	0x80	128	2	Qc	float
130	0x82	130	2	Q суммарная	float
132	0x84	132	2	Sa	float
134	0x86	134	2	Sb	float
136	0x88	136	2	Sc	float
138	0x8A	138	2	S суммарная	float
	•				itout
				я гармоника (быстрые/усредненные)	
140	0x8C	140	2	Ua1	float
142	0x8E	142	2	Ub1	float
144	0x90	144	2	Uc1	float
146	0x92	146	2	U1 фазное среднее	float
148	0x94	148	2	Uab1	float
150	0x96	150	2	Ubc1	float
152	0x98	152	2	Uca1	float

Смеще	ние	Адрес по	Число	Zuauguya paryerna	Тип рогистра
dec	hex	умолчанию	СЛОВ	Значение регистра	Тип регистра
154	0x9A	154	2	U1 линейное среднее	float
156	0x9C	156	2	la1	float
158	0x9E	158	2	lb1	float
160	0xA0	160	2	lc1	float
162	0xA2	162	2	I1 средний	float
164	0xA4	164	2	Pa1	float
166	0xA6	166	2	Pb1	float
168	0xA8	168	2	Pc1	float
170	0xAA	170	2	Р1 суммарная	float
172	0xAC	172	2	Qa1	float
174	0xAE	174	2	Qb1	float
176	0xB0	176	2	Qc1	float
178	0xB2	178	2	Q1 суммарная	float
180	0xB4	180	2	Sa1	float
182	0xB6	182	2	Sb1	float
184	0xB8	184	2	Sc1	float
186	0xBA	186	2	S1 суммарная	float

Косинусы, частота, параметры качества

188	0xBC	188	2	угол ф, фаза А	float
190	0xBE	190	2	угол ф, фаза В	float
192	0xC0	192	2	угол ф, фаза С	float
194	0xC2	194	2	угол ф, общий	float
196	0xC4	196	2	F	float
100	0,400	100	า	U0 - напряжение нулевой	floot
198	0xC6	198	2	последовательности	float
200	0xC8	200	2	U1 - напряжение прямой	float
200	UXCo	200	Z	последовательности	ituat
202	0xCA	202	2	U2 - напряжение обратной последовательности	float
				KnU - коэффициент несимметрии по	
204	0xCC	204	2	напряжению	float
				KdU - коэффициент искажения по	
206	0xCE	206	2	напряжению	float
208	0xD0	208	2	10 - ток нулевой последовательности	float
210	0xD2	210	2	I1 - ток прямой последовательности	float
212	0xD4	212	2	12 - ток обратной последовательности	float
				Knl - коэффициент несимметрии по	
214	0xD6	214	2	току	float
216	0xD8	216	2	Kdl - коэффициент искажения по току	float
				THD - коэффициент гармонических	
218	0xDA	218	2	искажений	float

Значения с плавающей запятой, только для ЭНИП-2-...-32:

220	0xDC	220	2	UL1	float
222	0xDE	222	2	UL2	float
224	0xE0	224	2	UL3	float
226	0xE2	226	2	1	1
228	0xE4	228	2	1	1
230	0xE6	230	2	1	-
232	0xE8	232	2		-

Адресация по умолчанию для модификаций ЭНИП-2-...-Х3:

Смеще	ние	Адрес по	Число	Zuguguya parustna	Tur posucena			
dec	hex	умолчанию	СЛОВ	Значение регистра	Тип регистра			
Целочі	Целочисленные значения							
0	0x00	0	1	f	ushort			
1	0x01	1	1	Ua1	ushort			
2	0x02	2	1	∠Ua1	ushort			
3	0x03	3	1	Ub1	ushort			
4	0x04	4	1	∠Ub1	ushort			
5	0x05	5	1	Uc1	ushort			
6	0x06	6	1	∠Uc1	ushort			
7	0x07	7	1	la1	ushort			
8	0x08	8	1	∠la1	ushort			
9	0x09	9	1	lb1	ushort			
10	0x0A	10	1	∠lb1	ushort			
11	0x0B	11	1	lc1	ushort			
12	0x0C	12	1	∠lc1	ushort			
13	0x0D	13	1	UO	ushort			
14	0x0E	14	1	∠U0	ushort			
15	0x0F	15	1	U1	ushort			
16	0x10	16	1	∠U1	ushort			
17	0x11	17	1	U2	ushort			
18	0x12	18	1	∠U2	ushort			
19	0x13	19	1	10	ushort			
20	0x14	20	1	∠10	ushort			
21	0x15	21	1	11	ushort			
22	0x16	22	1	∠l1	ushort			
23	0x17	23	1	12	ushort			
24	0x18	24	1	∠12	ushort			
25	0x19	25	1	Pa	short			
26	0x1A	26	1	Qa	short			
27	0x1B	27	1	Ua	ushort			
28	0x1C	28	1	la	ushort			
29	0x1D	29	1	Pb	short			
30	0x1E	30	1	Qb	short			
31	0x1F	31	1	Ub	ushort			
32	0x20	32	1	Ib	ushort			
33	0x21	33	1	Pc	short			
34	0x22	34	1	Qc	short			
35	0x23	35	1	Uc	ushort			
36	0x24	36	1	Ic	ushort			
37	0x25	37	1	Р	short			
38	0x26	38	1	Q	short			
39	0x27	39	1	Sa	short			

Смеще dec	ние hex	Адрес по умолчанию	Число слов	Значение регистра	Тип регистра
40	0x28	40	1	Sb	short
41	0x29	41	1	Sc	short
42	0x2A	42	1	S	short
43	0x2B	43	1	fa	ushort
44	0x2C	44	1	fb	ushort
45	0x2D	45	1	fc	ushort
46	0x2E	46	1	df	short
47	0x2F	47	1	dfa	short
48	0x30	48	1	dfb	short
49	0x31	49	1	dfc	short
50	0x32	50	1	соѕфа	short
51	0x33	51	1	соѕфЬ	short
52	0x34	52	1	соѕфс	short
53	0x35	53	1	Uab	ushort
54	0x36	54	1	Ubc	ushort
55	0x37	55	1	Uca	ushort
Значен	ния в фо	омате с плавак	ощей запя	Ітой	
56	0x38	56	2	f	float
58	0x3A	58	2	Ua1	float
60	0x3C	60	2	∠Ua1	float
62	0x3E	62	2	Ub1	float
64	0x40	64	2	∠Ub1	float
66	0x42	66	2	Uc1	float
68	0x44	68	2	∠Uc1	float
70	0x46	70	2	la1	float
72	0x48	72	2	∠la1	float
74	0x4A	74	2	lb1	float
76	0x4C	76	2	∠lb1	float
78	0x4E	78	2	lc1	float
80	0x50	80	2	∠lc1	float
82	0x52	82	2	U0	float
84	0x54	84	2	∠U0	float
86	0x56	86	2	U1	float
88	0x58	88	2	∠U1	float
90	0x5A	90	2	U2	float
92	0x5C	92	2	∠U2	float
94	0x5E	94	2	10	float
96	0x60	96	2	∠10	float
98	0x62	98	2	I1	float
100	0x64	100	2	۷۱۱	float
102	0x66	102	2	12	float
104	0x68	104	2	∠12	float
106	0x6A	106	2	Pa	float

Смеще	ние	Адрес по	Число	2	T
dec	hex	умолчанию	слов	Значение регистра	Тип регистра
108	0x6C	108	2	Qa	float
110	0x6E	110	2	Ua	float
112	0x70	112	2	la	float
114	0x72	114	2	Pb	float
116	0x74	116	2	Qb	float
118	0x76	118	2	Ub	float
120	0x78	120	2	Ib	float
122	0x7A	122	2	Pc	float
124	0x7C	124	2	Qc	float
126	0x7E	126	2	Uc	float
128	0x80	128	2	Ic	float
130	0x82	130	2	Р	float
132	0x84	132	2	Q	float
134	0x86	134	2	Sa	float
136	0x88	136	2	Sb	float
138	0x8A	138	2	Sc	float
140	0x8C	140	2	S	float
142	0x8E	142	2	fa	float
144	0x90	144	2	fb	float
146	0x92	146	2	fc	float
148	0x94	148	2	df	float
150	0x96	150	2	dfa	float
152	0x98	152	2	dfb	float
154	0x9A	154	2	dfc	float
156	0x9C	156	2	соѕфа	float
158	0x9E	158	2	соsфb	float
160	0xA0	160	2	соѕфс	float
162	0xA2	162	2	Uab	float
164	0xA4	164	2	Ubc	float
166	0xA6	166	2	Uca	float

Дискретные данные

Чтение дискретных данных из прибора осуществляется по команде 01 (Read Coil Status), либо 03 (Reading Holding Register, только для модификаций ЭНИП-2-...-X1, ЭНИП-2-...-X2). Пример запроса и ответа по команде 01 представлены ниже:

Адрес устройства	Команда	Стартовый	адрес ТС	Количес	тво ТС	Контрольн сумма (CR	-
01	01	00	02	00	OC	9D	CF

Для приведенного выше запроса ответом будет служить пакет вида:

Адрес	V омания а	Количество	Отрот	Контрольная
устройства	Команда	байт в ответе	Ответ	сумма (CRC)

4							
	- 4		0.0				
	()1	l N1	(1)	l N2	00	RQ	90
	O1	O1	UZ	UZ	UU	DO	<i>)</i> C

Где четвёртый и пятый байт в бинарном виде характеризуют состояние ТС:

Байт	02				00											
Бит	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Адрес ТС	9	8	7	6	5	4	3	2					13	12	11	10

В приведенном примере запрашивалось 12 ТС начиная с адреса 02, из ответа можно сделать вывод, что ТС с адресом 03 замкнута.

Запрос по команде 03 осуществляется аналогично, в качестве стартового адреса указывается 72 (по умолчанию), количество параметров 1 (для запроса первых 16 TC) или 2 (для запроса всех 32 TC). Настройки адресации производятся с помощью ПО «ES Конфигуратор».

• Адресация по умолчанию для модификаций ЭНИП-2-...-X1, ЭНИП-2-...-32:

Смеще	ение	Адрес по	2
dec	hex	умолчанию	Значение регистра
0	0x00	0	DIO1
1	0x01	1	DIO2
2	0x02	2	DIO3
3	0x03	3	DIO4
4	0x04	4	DIO5
5	0x05	5	DIO6
6	0x06	6	DIO7
7	0x07	7	DIO8
8	0x08	8	DIO9 (DI1 при наличии)
9	0x09	9	DIO10 (DI2 при наличии)
10	0x0A	10	DIO11 (DI3 при наличии)
11	0x0B	11	DIO12 (DI4 при наличии)
12	0x0C	12	DIO13 (DI5 при наличии)
13	0x0D	13	DIO14 (DI6 при наличии)
14	0x0E	14	DIO15 (DI7 при наличии)
15	0x0F	15	DIO16 (DI8 при наличии)
16	0x10	16	DIO17
17	0x11	17	DIO18
18	0x12	18	DIO19
19	0x13	19	DIO20
20	0x14	20	DIO21
21	0x15	21	DIO22
22	0x16	22	DIO23
23	0x17	23	DIO24
24	0x18	24	DIO25
25	0x19	25	DI026
26	0x1A	26	DIO27
27	0x1B	27	DIO28
28	0x1C	28	DIO29
29	0x1D	29	DIO30
30	0x1E	30	DIO31
31	0x1F	31	DIO32

• Адресация по умолчанию для модификаций ЭНИП-2-...-X1, ЭНИП-2-...-32:

Смеще	ние	Адрес по	Zuguanna parustpa
dec	hex	умолчанию	Значение регистра
0	0x00	0	DI1
1	0x01	1	DI2
2	0x02	2	DI3
3	0x03	3	DI4
4	0x04	4	DI5
5	0x05	5	DO1 (при наличии)
6	0x06	6	DO2 (при наличии)
7	0x07	7	DO3 (при наличии)

Приложение В. ЭНИП-2: протоколы связи ГОСТ Р МЭК 60870-5-101-2006 и ГОСТ Р МЭК 60870-5-104-2004

Возможные типы ASDU

Тип значений	Тип ASDU	Мнемоника	Описание	
	1	M_SP_NA_1	одноэлементная информация	
TC	3*	M_DP_NA_1	двухэлементная информация	
IC.	30	M_SP_TB_1	одноэлементная информация с меткой времени СР56	
	31*	M_DP_TB_1	двухэлементная информация с меткой времени СР56	
	11	M_ME_NB_1	измеряемая величина, short	
ТИ	13	M_ME_NC_1	измеряемая величина, float	
1 1/1	35	M_ME_TE_1	измеряемая величина, short, с меткой времени CP56	
	36	M_ME_TF_1	измеряемая величина, float с меткой времени CP56	
15* M_IT_N		M_IT_NA_1	интегральная сумма	
ТИИ	37*	M_IT_TB_1	интегральная сумма, с меткой времени СР56	

Примечание: * - только для ЭНИП-2-...-X1, ЭНИП-2-...-X2

ЭНИП-2 поддерживает выполнение команд ТУ Single command (<45>), Double command (<46>) в рамках протоколов ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004.

		Величина кванта					
Квант	Original originals assessing	Іном = 5	A		Іном = 1 А		
KBaHI	Описание, единица измерения	Uф = 57,7	Uφ = 220/230	Uф = 400	Uф = 57,7		
I	Квант тока, А	0,001			0,0002		
U	Квант напряжения, В	0,01	0,04	0,08	0,01		
P/Q/S/W	Квант мощности, энергии*, Вт(/ч)/Вар(/ч)/ВА	0,1	0,4	0,8	0,02		
F	Квант частоты с 3 десятичными знаками, Гц						
Г	Квант частоты с 2 десятичными знаками, Гц	0,01					
cosф, tgф			0,001				
ф	Квант ф		0,01				
dF	: Квант dF		0,01				
۷	Квант ф векторов	0,00549					

^{*} энергия всегда является масштабированной величиной. Для её приведения, требуется домножить полученное значение на вес кванта и коэффициент трансформации.

Адресация элементов информации для исполнения ЭНИП-2-...-X1, ЭНИП-2-...-X2:

Адрес по умолчанию	Наименование п	Тип AS	DU	Значение кванта (для типов 11,35,37)	
ТУ/ТС					
1000	DO1 ON	(ЭHMB-1/2 №1)	1/30	3/31	-
1001	DO2 OFF	(ЭHMB-1/2 №1)	1/30	3/31	-
1002	DO3 ON	(ЭHMB-1/2 №2)	1/30	7 /7 1	-
1003	DO4 OFF	(ЭHMB-1/2 №2)	1/30	3/31	-
1004	DO5 ON	(ЭHMB-1/2 №3)	1/30	7 /7 1	-
1005	DO6 OFF	(ЭHMB-1/2 №3)	1/30	3/31	-
1006	DO7 ON	(ЭHMB-1/2 №4)	1/30	7 /7 1	-
1007	DO8 OFF	(ЭHMB-1/2 №4)	1/30	3/31	-
1	DI1	(ЭНИП)	1/30	7 /7 1	-
2	DI2	(ЭНИП)	1/30	3/31	-
3	DI3	(ЭНИП)	1/30	7 /7 1	-
4	DI4	(ЭНИП)	1/30	3/31	-
5	DI5	(ЭНИП)	1/30	7 /7 1	-
6	DI6	(ЭНИП)	1/30	3/31	-
7	DI7	(ЭНИП)	1/30	7 /7 1	-
8	DI8	(ЭНИП)	1/30	3/31	-

RMS (быстрые/усредненные/фиксированные быстрые/фиксированные усредненные)

100	Ua	11/13/35/36	Uquant, B
101	Ub	11/13/35/36	Uquant, B
102	Uc	11/13/35/36	Uquant, B
103	U фазное среднее	11/13/35/36	Uquant, B
104	Uab	11/13/35/36	Uquant, B
105	Ubc	11/13/35/36	Uquant, B
106	Uca	11/13/35/36	Uquant, B
107	U линейное среднее	11/13/35/36	Uquant, B
108	la	11/13/35/36	Iquant, A
109	lb	11/13/35/36	Iquant, A
110	Ic	11/13/35/36	Iquant, A
111	I средний	11/13/35/36	Iquant, A
112	Pa	11/13/35/36	Pquant, Вт
113	Pb	11/13/35/36	Pquant, Вт
114	Pc	11/13/35/36	Pquant, Вт
115	Р суммарная	11/13/35/36	Pquant, Вт
116	Qa	11/13/35/36	Qquant, Bap
117	Qb	11/13/35/36	Qquant, Bap
118	Qc	11/13/35/36	Qquant, Bap
119	Q суммарная	11/13/35/36	Qquant, Bap
120	Sa	11/13/35/36	Squant, BA
121	Sb	11/13/35/36	Squant, BA
124	Sc	11/13/35/36	Squant, BA
123	S суммарная	11/13/35/36	Squant, BA

Адрес по умолчанию	Наименование параметра	Тип ASDU	Значение кванта (для типов 11,35,37)						
Первая гармоника (быстрые/усредненные/фиксированные усредненные)									
0	Ua	11/13/35/36	Uquant, B						
0	Ub	11/13/35/36	Uquant, B						
0	Uc	11/13/35/36	Uquant, B						
0	U фазное среднее	11/13/35/36	Uquant, B						
0	Uab	11/13/35/36	Uquant, B						
0	Ubc	11/13/35/36	Uquant, B						
0	Uca	11/13/35/36	Uquant, B						
0	U линейное среднее	11/13/35/36	Uquant, B						
0	la	11/13/35/36	Iquant, A						
0	lb	11/13/35/36	Iquant, A						
0	Ic	11/13/35/36	Iquant, A						
0	I средний	11/13/35/36	Iquant, A						
0	Pa	11/13/35/36	Pquant, Вт						
0	Pb	11/13/35/36	Pquant, Вт						
0	Pc	11/13/35/36	Pquant, Вт						
0	Р суммарная	11/13/35/36	Pquant, Вт						
0	Qa	11/13/35/36	Pquant, Вт						
0	Qb	11/13/35/36	Pquant, Вт						
0	Qc	11/13/35/36	Pquant, Вт						
0	Q суммарная	11/13/35/36	Pquant, Вт						
0	Sa	11/13/35/36	Pquant, Вт						
0	Sb	11/13/35/36	Pquant, Вт						
0	Sc	11/13/35/36	Pquant, Вт						
0	S суммарная	11/13/35/36	Pquant, Вт						

COS, частота, качество (быстрые/усредненные/фиксированные быстрые/фиксированные усредненные)

124	угол ф, фаза А	11/13/35/36	φquant
125	угол φ, фаза В	11/13/35/36	φquant
126	угол ф, фаза С	11/13/35/36	φquant
127	угол ф, общий	11/13/35/36	φquant
128	F	11/13/35/36	fquant
0	U0 - напряжение нулевой последовательности	11/13/35/36	Uquant, B
0	U1 - напряжение прямой последовательности	11/13/35/36	Uquant, B
0	U2 - напряжение обратной последовательности	11/13/35/36	Uquant, B
0	KuU - коэффициент несимметрии по напряжению	11/13/35/36	0,1 %
0	KdU - коэффициент искажения по напряжению	11/13/35/36	0,1 %
0	10 - ток нулевой последовательности	11/13/35/36	Iquant, A
0	I1 - ток прямой последовательности	11/13/35/36	Iquant, A
0	12 - ток обратной последовательности	11/13/35/36	Iquant, A
0	Kul - коэффициент несимметрии по току	11/13/35/36	0,1 %
0	Kdl - коэффициент искажения по току	11/13/35/36	0,1 %

Адрес по умолчанию	Наименование параметра	Тип ASDU	Значение кванта (для типов 11,35,37)
0	THD - коэффициент гармонических искажений	11/13/35/36	0,1 %
0	Т - температура внутри корпуса	11/13/35/36	1 °C

Дополнительные регистры

0	Diagnostic - слово состояния	11/13/35/36	1
0	Резерв - всегда равен 0	11/13/35/36	-

Энергия (быстрые/усредненные/фиксированные быстрые/фиксированные усредненные)

0	WP+ энергия активная, потребленная	15/37	Wquant, Вт/ч
0	WP- энергия активная, возвращенная	15/37	Wquant, Вт/ч
0	WQ+ энергия реактивная, потребленная	15/37	Wquant, Вар/ч
0	WQ- энергия реактивная, возвращенная	15/37	Wquant, Вар/ч

Файлы (тип файлов - 1: прозрачный файл)

40000	Журнал событий, txt	1	1
50000	Журнал TC, txt	-	-

Адреса файлов не настраиваются и не влияют на адресацию ТС/ТИ/ТИИ, т.е. могут совпадать с адресами элементов

Адресация элементов информации для исполнения ЭНИП-2-...-Х3:

Адрес по умолчанию	I Наименование параметра I I		Значение кванта (для типов 11,35)
1	f	11/13/35/36	fquant
2	Ua1	11/13/35/36	Uquant, B
3	∠Ua1	11/13/35/36	۷
4	Ub1	11/13/35/36	Uquant, B
5	∠Ub1	11/13/35/36	۷
6	Uc1	11/13/35/36	Uquant, B
7	∠Uc1	11/13/35/36	۷
8	la1	11/13/35/36	Iquant, A
9	∠la1	11/13/35/36	۷
10	lb1	11/13/35/36	Iquant, A
11	∠lb1	11/13/35/36	۷
12	Ic1	11/13/35/36	Iquant, A
13	∠lc1	11/13/35/36	۷
14	U0	11/13/35/36	Uquant, B
15	∠U0	11/13/35/36	۷
16	U1	11/13/35/36	Uquant, B
17	∠U1	11/13/35/36	۷
18	U2	11/13/35/36	Uquant, B
19	∠U2	11/13/35/36	۷
20	10	11/13/35/36	Iquant, A

^{*} Параметры, указанные в таблице как «с плав. запятой», могут передаваться в формате с плавающей запятой одинарной точности (float) стандарта IEEE 754;

^{**} Серым цветом выделены адреса параметров, по умолчанию неактивных.

Адрес по			Значение кванта
умолчанию	Наименование параметра	Тип ASDU	(для типов 11,35)
21	∠10	11/13/35/36	4
22	I1	11/13/35/36	Iquant, A
23	∠l1	11/13/35/36	۷
24	12	11/13/35/36	Iquant, A
25	∠12	11/13/35/36	۷
26	Pa	11/13/35/36	Pquant, Вт
27	Qa	11/13/35/36	Pquant, Вт
28	Ua	11/13/35/36	Uquant, B
29	la	11/13/35/36	Iquant, A
30	Pb	11/13/35/36	Pquant, Вт
31	Qb	11/13/35/36	Pquant, Вт
32	Ub	11/13/35/36	Uquant, B
33	lb	11/13/35/36	Iquant, A
34	Pc	11/13/35/36	Pquant, BT
35	Qc	11/13/35/36	Pquant, BT
36	Uc	11/13/35/36	Uquant, B
37	Ic	11/13/35/36	Iquant, A
38	P	11/13/35/36	Pquant, BT
39	Q	11/13/35/36	Pquant, BT
40	Sa	11/13/35/36	Pquant, BT
41			Pquant, BT
	Sb Sc	11/13/35/36	Pquant, BT
42		11/13/35/36	Pquant, BT
	5	11/13/35/36	fquant
44	fa	11/13/35/36	fquant
45	fb	11/13/35/36	fquant
46	fc	11/13/35/36	dfquant
47	df	11/13/35/36	
48	dfa	11/13/35/36	dfquant
49	dfb	11/13/35/36	dfquant
50	dfc	11/13/35/36	dfquant
51	cosфa	11/13/35/36	φquant
52	соsфb	11/13/35/36	фquant
53	соѕфс	11/13/35/36	фquant
54	Uab	11/13/35/36	Uquant, B
55	Ubc	11/13/35/36	Uquant, B
56	Uca	11/13/35/36	Uquant, B
16385	DI1	1/30	-
16386	DI2	1/30	-
16387	DI3	1/30	-
16388	DI4	1/30	-
16389	DI5	1/30	-
16390	D01	1/30	-
16391	DO2	1/30	-
16392	DO3	1/30	-

Формуляр соглашений о совместимости телемеханической системы на базе преобразователя измерительного многофункционального ЭНИП-2 в соответствии с ГОСТ Р МЭК 60870-5-101-2006 / ГОСТ Р МЭК 60870-5-104-2004

Настоящий формуляр представляет набор параметров и переменных, из которых может быть выбран поднабор для реализации конкретной системы телемеханики на базе преобразователя измерительного многофункционального ЭНИП-2 в соответствии с ГОСТ Р МЭК 60870-5-101-2006 (ГОСТ Р МЭК 60870-5-104-2004).

Для ряда параметров допускается только одно значение для каждой системы. Другие параметры, такие как набор данных и функций, используемых в направлении управления и контроля, позволяют определить набор или поднаборы, подходящие для использования на данном объекте. На стадии наладки обмена телемеханической информацией необходимо, чтобы выбранные параметры были согласованы между ЭНИП-2 и оборудованием других производителей.

Принятые обозначения:

- □ Функция или ASDU не используется.
- R Функция или ASDU используется в только в обратном направлении.
- - Функция или ASDU используется в обоих направлениях.

Возможный выбор (пустой, X, R или B) определяется для каждого пункта или параметра. Черный прямоугольник указывает на то, что опция не может быть выбрана в настоящем стандарте.

1. Система или устройство

(Параметр, характерный для системы; указывает на определение системы или устройства, маркируя один из нижеследующих прямоугольников знаком «Х»)

ГОСТ	ГОСТ Р МЭК 60870-5-101-2006		Р МЭК 60870-5-104-2004	
	Определение системы.		Определение системы.	
	Определение контролирующей		Определение контролирующей	
станц	станции (Ведущий-Master).		станции (Ведущий-Master).	
🗵 Определение контролируемой			Определение контролируемой	
станции (Ведомый-Slave).		стані	ции (Ведомый-Slave).	

2. Конфигурация сети

ГОСТ Р МЭК 60870-5-101-2006					
⊠ Точка-точка⊠ Радиальная точка-точка	Магистральная Многоточечная радиальная				

ГОСТ Р МЭК 60870-5-104-2004	
■ Точка-точка ■ Радиальная точка-точка	Магистральная ■ Многоточечная радиальная

3. Физический уровень

(Параметр, характерный для сети; все используемые интерфейсы и скорости передачи данных маркируются знаком «Х»)

Скорости передачи (направление управления)

ГОСТ Р МЭК 60870-5-101-2006						
Несимметричные цепи		Hec	Несимметричные цепи обмена		Симметричные цепи	
обмена V.24/V.28		V.24,	V.24/V.28, рекомендуемые при		обмена Х.24/Х.27	
стандартные		скор	ости более1200 бит/с			
	100бит/с	X	2400бит/с		2400бит/с	
	200бит/с	X	4800бит/с		4800бит/с	
	300бит/с	X	9600бит/с		9600бит/с	
	600бит/с	X	19200бит/с		19200бит/с	
\boxtimes	1200бит/с	X	38400 бит/с		38400бит/с	
		X	57600 бит/с		56000бит/с	
		X	115200 бит/с		64000бит/с	

ГОСТ Р МЭК 60870-5-104-2004						
Несимметричные цепи	Несимметричные цепи	Симметричные цепи обмена				
обмена V.24/V.28	обмена V.24/V.28,	X.24/X.27				
стандартные	рекомендуемые при					
	скорости более1200					
	бит/с					
■ 100бит/с	■ 2400бит/с	■2400бит/с ■38400бит/с				
■ 200бит/с	■ 4800бит/с	■4800бит/с ■56000бит/с				
■ 300бит/с	■ 9600бит/с	■9600бит/с ■64000бит/с				
■ 600бит/с		■19200бит/с				
■ 1200бит/с						

Скорости передачи (направление контроля)

ГОСТ	ГОСТ Р МЭК 60870-5-101-2006					
Несимметричные цепи		Неси	Несимметричные цепи обмена		Симметричные цепи	
обмена V.24/V.28		V.24,	V.24/V.28, рекомендуемые при		обмена Х.24/Х.27	
стандартные		скор	ости более1200 бит/с			
	100бит/с	X	2400бит/с		2400бит/с	
	200бит/с	X	4800бит/с		4800бит/с	
	300бит/с	X	9600бит/с		9600бит/с	
	600бит/с	X	⊠ 19200бит/с		19200бит/с	
X	1200бит/с	⊠ 38400 бит/с			38400бит/с	
		X	57600 бит/с		56000бит/с	
		X	115200 бит/с		64000бит/с	

ГОСТ Р МЭК 60870-5-104-2004			
Несимметричные цепи	Несимметричные цепи	Симметричные цепи обмена	
обмена V.24/V.28	обмена V.24/V.28,	X.24/X.27	
стандартные	рекомендуемые при		
	скорости более1200		
	бит/с		
■ 100бит/с	■ 2400бит/с	■2400бит/с ■38400бит/с	
■ 200бит/с	■ 4800бит/с	■4800бит/с ■56000бит/с	
■ 300бит/с	■ 9600бит/с	■9600бит/с ■64000бит/с	
■ 600бит/с		■19200бит/с	
■ 1200бит/с			

Параметры соединения (при использовании асинхронных каналов связи)

ГОСТ	P MЭK 60870-5-101-2006
8	– Количество бит данных (5,6,7,8)
1	– Количество стоп-битов (1, 2)
	– Четность отсутствует (None)
X	– Контроль по четности (Even)
	– Контроль по нечетности (Odd)
ГОСТ	Р МЭК 60870-5-104-2004
ГОСТ	Р МЭК 60870-5-104-2004 – Количество бит данных (5,6,7,8)
ГОСТ	
ГОСТ	– Количество бит данных (5,6,7,8)
ГОСТ	Количество бит данных (5,6,7,8)Количество стоп-битов (1, 2)
	Количество бит данных (5,6,7,8)Количество стоп-битов (1, 2)Четность отсутствует (None)

4. Канальный уровень

(Параметр, характерный для сети; все используемые опции маркируются знаком X.) Указывают максимальную длину кадра. Если применяется нестандартное назначение для сообщений класса 2 при небалансной передаче, то указывают Туре ID (или Идентификаторы типа) и СОТ (Причины передачи) всех сообщений, приписанных классу 2.

ГОСТ Р МЭК 60870-5-101-2006

В настоящем стандарте используются только формат кадра FT 1.2, управляющий символ 1 и фиксированный интервал времени ожидания.

Перед	цача по каналу	Адрес	ное поле канального уровня
	Балансная передача		
X	Небалансная передача		
Длина	а кадра		Отсутствует (только при балансной
255	Максимальная длина L (число	перед	аче)
байто	в)	X	Один байт
(в наг	травлении управления)		Два байта
255	Максимальная длина L (число		Структурированное
байто	в)	X	Неструктурированное
(в нап	равлении контроля)		
		1-254	4 Диапазон значений канального
5 повт	горений – Либо время, в течение	адрес	a
котор	ого разрешаются повторения (Trp),		
либо,	число повторений		

При использовании небалансного канального уровня следующие типы ASDU возвращаются при сообщениях класса 2 (низкий приоритет) с указанием причин передачи:

□ Стандартное назначение ASDU к сообщениям класса 2 используется следующим образом

ИДЕНТИФИКАТОР типа	Причина передачи

ИДЕНТИФИКАТОР типа	Причина передачи
1, 3, 11, 13, 15, 30, 31, 35, 36,37	<3>

Примечание: При ответе на опрос данных класса 2 контролируемая станция может посылать в ответ данные класса 1, если нет доступных данных класса 2.

ГОСТ Р МЭК 60870-5-104-2004

В настоящем стандарте используются только формат кадра FT 1.2, управляющий символ 1 и фиксированный интервал времени ожидания.

Передача по каналу	Адресное поле канального уровня	
■ Балансная передача	■ Отсутствует (только при балансной	
■ Небалансная передача	передаче)	
Длина кадра	■ Один байт	
■ Максимальная длина L (число	■ Два байта	
байтов)	 Структурированное 	
	 Неструктурированное 	

При использовании небалансного канального уровня следующие типы ASDU возвращаются при сообщениях класса 2 (низкий приоритет) с указанием причин передачи:

■ Стандартное назначение ASDU к сообщениям класса 2 используется следующим образом

ИДЕНТИФИКАТОР типа	Причина передачи

■ Специальное назначение ASDU к сообщениям класса 2 используется следующим образом

ИДЕНТИФИКАТОР типа	Причина передачи

5. Прикладной уровень

Режим передачи прикладных данных

В настоящем стандарте используется только режим 1 (первым передается младший байт), как определено в 4.10 ГОСТ Р МЭК 870-5-4.

Общий адрес ASDU

(Параметр, характерный для системы; все используемые варианты маркируются знаком X).

ГОСТ Р МЭК 60870-5-101-2006	ГОСТ Р МЭК 60870-5-104-2004
⊠ Один байт⊠ Два байта	■ Один байт ■ Два байта

Адрес объекта информации

(Параметр, характерный для системы; все используемые варианты маркируются знаком X).

ГОСТ	Р МЭК 60870-5-101-2006		
	Один байт	X	Структурированный
X	Два байта	X	Неструктурированный
X	Три байта		

ГОСТ Р МЭК 60870-5-104-2004		
■ Один байт		Структурированный
Два байта	В	Неструктурированный
🗵 Три байта		

Причина передачи

(Параметр, характерный для системы; все используемые варианты маркируются знаком X).

ГОСТ Р МЭК 60870-5-101-2006		
🗵 Один байт	X	Два байта (с адресом источника)

ΓΟСΤ Ι	Р МЭК 60870-5-104-2004		
	Один байт	X	Два байта (с адресом источника)

Если адрес источника не используется, то он устанавливается в 0.

ГОСТ Р МЭК 60870-5-104-2004

Длина APDU

(Параметр, характерный для системы, устанавливающий максимальную длину APDU в системе).

Максимальная длина APDU равна 253 (по умолчанию). Максимальная длина может быть уменьшена для системы.

Максимальная длина APDU для систем.

Выбор стандартных ASDU

Информация о процессе в направлении контроля

Назначение идентификатора типа и причины передачи

(Параметр, характерный для станции).

Для ЭНИП-2-...-X1 и ЭНИП-2-...-X2

ГОСТ Р	МЭК 60870-5-10)4-2(004														
иленті	1ФИКАТОР	Пр	ичи	на п	epe	цачи											
ТИПА	ΊΨΛΙΚΑΤΟΡ	1	2	3	4	5	6	7	8	9	10	11	12	13	20- 36	37- 41	44- 47
<1>	M SP NA 1		Х	Х											X	11	17
<2>	M_SP_TA_1		Ĥ	,													
<3>	M DP NA 1		Х	Χ											Х		
<4>	M DP TA 1		,	Λ.													
<5>	M ST NA 1																
<6>	M ST TA 1																
<7>	M BO NA 1																
<8>	M BO TA 1																
<9>	M ME NA 1																
<10>	M ME TA 1																
<11>	M ME NB 1	Х	Χ	Χ											Х		
<12>	M ME TB 1	7.	, ·	,													
<13>	M ME NC 1	Х	Х	Χ											Х		
<14>	M ME TC 1			, ·													
<15>	M IT NA 1			Χ												Х	
<16>	M IT TA 1																
<17>	M EP TA 1																
<18>	M_EP_TB_1																
<19>	M EP TC 1																
<20>	M_PS_NA_1																
<21>	M ME ND 1																
<30>	M_SP_TB_1			Х													
<31>	M DP TB 1			X													
<32>	M ST TB 1																
<33>	M BO TB 1																
<34>	M ME TD 1																
<35>	M ME TE 1			Х													
<36>	M ME TF 1			X													
<37>	M IT TB 1			X												Х	-
<38>	M EP TD 1			<u> </u>													
<39>	M IT TB 1																
<40>	M EP TD 1																
<45>	C SC NA 1						R	R	R	R	R						R
<46>	C DC NA 1						R	R	R	R	R						R
<47>	C RC NA 1							<u> </u>	<u> </u>	<u> </u>	· `						 ``
<48>	C SE NA 1																
<49>	C SE NB 1																
<50>	C SE NC 1																
<51>	C BO NA 1																
<70>	M EI NA 1																
<100>	C IC NA 1						R	R	R	R	R						
<101>	C CI NA 1						R	R	11	"\	R						
<102>	C_RD_NA_1					R		1									R
<103>	C CS NA 1					11	R	R									R
<104>	C_CS_NA_1						11	IX									11
<105>	C RP NA 1																
<106>	C_KP_NA_1																
<110>	P ME NA 1																
/110/	I TITTINAT					<u> </u>		l							I		

<111>	P_ME_NB_1									
<112>	P_ME_NC_1									
<113>	P_AC_NA_1									
<120>	F_FR_NA_1							Χ		
<121>	F_SR_NA_1							Χ		
<122>	F_SC_NA_1							Χ		
<123>	F_LS_NA_1							Χ		
<124>	F_AF_NA_1							Χ		
<125>	F_CG_NA_1							Χ		

ГОСТ Р	МЭК 60870-5-10	01-20	006														
илешт	ИФИКАТОР	Пр	ичиі	на п	epe	цачи											
ТИПА	ЛФИКАТОР	1	2	3	4	5	6	7	8	9	10	11	12	13	20- 36	37- 41	44- 47
<1>	M_SP_NA_1		Χ	Χ											Χ		
<2>	M_SP_TA_1																
<3>	M_DP_NA_1		Χ	Χ											Χ		
<4>	M_DP_TA_1																
<5>	M_ST_NA_1																
<6>	M_ST_TA_1																
<7>	M_BO_NA_1																
<8>	M_BO_TA_1																
<9>	M_ME_NA_1																
<10>	M_ME_TA_1																
<11>	M_ME_NB_1	Х	Χ	Χ											Х		
<12>	M_ME_TB_1																
<13>	M_ME_NC_1	Х	Χ	Χ											Χ		
<14>	M_ME_TC_1																
<15>	M_IT_NA_1			Χ												Χ	
<16>	M_IT_TA_1																
<17>	M EP TA 1																
<18>	M_EP_TB_1																
<19>	M_EP_TC_1																
<20>	M_PS_NA_1																
<21>	M_ME_ND_1																
<30>	M_SP_TB_1			Χ													
<31>	M_DP_TB_1			Χ													
<32>	M_ST_TB_1																
<33>	M_BO_TB_1																
<34>	M_ME_TD_1																
<35>	M_ME_TE_1			Χ													
<36>	M_ME_TF_1			Χ													
<37>	M_IT_TB_1			Χ												Χ	
<38>	M_EP_TD_1																
<39>	M_IT_TB_1																
<40>	M_EP_TD_1																
<45>	C_SC_NA_1						R	R	R	R	R						R
<46>	C_DC_NA_1						R	R	R	R	R						R
<47>	C_RC_NA_1						R	R	R	R	R						R
<48>	C_SE_NA_1																
<49>	C_SE_NB_1																

<50>	C_SE_NC_1												
<51>	C_BO_NA_1												
<70>	M_EI_NA_1												
<100>	C_IC_NA_1				R	R	R	R	R				
<101>	C_CI_NA_1				R	R			R				
<102>	C_RD_NA_1			R									R
<103>	C_CS_NA_1				R	R							R
<104>	C_TS_NA_1												
<105>	C_RP_NA_1												
<106>	C_CD_NA_1												
<110>	P_ME_NA_1												
<111>	P_ME_NB_1												
<112>	P_ME_NC_1												
<113>	P_AC_NA_1												
<120>	F_FR_NA_1										Χ		
<121>	F_SR_NA_1										Χ		
<122>	F_SC_NA_1										Χ		
<123>	F_LS_NA_1										Χ		
<124>	F_AF_NA_1										Χ		
<125>	F_CG_NA_1										Χ		
<126>	F_DR_TA_1												

Для ЭНИП-2-...-Х3

ГОСТ Р	МЭК 60870-5-10	1															
иленті	ИФИКАТОР	Пр	ичи	на п	epe	цачи	l				•						•
типа	14/110/1101	1	2	3	4	5	6	7	8	9	10	11	12	13	20-	37-	44-
							Ŭ				10	11	12	13	36	41	47
<1>	M_SP_NA_1		Χ	Χ													
<2>	M_SP_TA_1																
<3>	M_DP_NA_1																
<4>	M_DP_TA_1																
<5>	M_ST_NA_1																
<6>	M_ST_TA_1																
<7>	M_BO_NA_1																
<8>	M_BO_TA_1																
<9>	M_ME_NA_1																
<10>	M_ME_TA_1																
<11>	M_ME_NB_1	Х	Χ	Χ													
<12>	M_ME_TB_1																
<13>	M_ME_NC_1	Х	Χ	Χ													
<14>	M_ME_TC_1																
<15>	M_IT_NA_1																
<16>	M_IT_TA_1																
<17>	M_EP_TA_1																
<18>	M_EP_TB_1																
<19>	M_EP_TC_1																
<20>	M_PS_NA_1																
<21>	M_ME_ND_1																
<30>	M_SP_TB_1			Х													
<31>	M_DP_TB_1																

	T		1	ı									
<32>	M_ST_TB_1												
<33>	M_BO_TB_1												
<34>	M_ME_TD_1												
<35>	M_ME_TE_1		Χ										
<36>	M_ME_TF_1		Χ										
<37>	M_IT_TB_1		Χ									Χ	
<38>	M_EP_TD_1												
<39>	M_IT_TB_1												
<40>	M_EP_TD_1												
<45>	C_SC_NA_1				R	R	R	R	R				R
<46>	C_DC_NA_1				R	R	R	R	R				R
<47>	C_RC_NA_1												
<48>	C_SE_NA_1												
<49>	C_SE_NB_1												
<50>	C_SE_NC_1												
<51>	C_BO_NA_1												
<70>	M_EI_NA_1												
<100>	C_IC_NA_1				R	R	R	R	R				
<101>	C_CI_NA_1												
<102>	C_RD_NA_1												
<103>	C_CS_NA_1				R	R							R
<104>	C_TS_NA_1												
<105>	C_RP_NA_1												
<106>	C_CD_NA_1												
<110>	P_ME_NA_1												
<111>	P_ME_NB_1												
<112>	P_ME_NC_1												
<113>	P_AC_NA_1												
<120>	F_FR_NA_1												
<121>	F_SR_NA_1												
<122>	F_SC_NA_1												
<123>	F_LS_NA_1												
<124>	F_AF_NA_1												
<125>	F_CG_NA_1												
<126>	F_DR_TA_1												
-													

Обозначения:

Серые прямоугольники: опция не требуется.

Черный прямоугольник: опция, не разрешенная в настоящем стандарте.

Пустой прямоугольник: функция или ASDU не используется.

Маркировка Идентификатора типа/Причины передачи:

Х - используется только в стандартном направлении;

R - используется только в обратном направлении;

В - используется в обоих направлениях.

6. Основные прикладные функции

Инициализация станции
□ Удаленная инициализация
Циклическая передача данных
⊠ Циклическая передача данных
Процедура чтения
□ Процедура чтения
Спорадическая передача
🗵 Спорадическая передача
Дублированная передача объектов информации при спорадической причине передачи
(Параметр, характерный для станции; каждый тип информации маркируется знаком X, если оба типа – Туре ID без метки времени и соответствующий Туре ID с меткого времени – выдаются в ответ на одиночное спорадическое изменение в контролируемом объекте).
Следующие идентификаторы типов, вызванные одиночным изменением состояния объекта информации, могут передаваться последовательно. Индивидуальные адреса объектов информации, для которых возможна дублированная передача, определяются в проектной документации.
□ Одноэлементная информация M_SP_NA_1, M_SP_TA_1, M_SP_TB_1,
M_PS_NA_1
□ Двухэлементная информация M_DP_NA_1, M_DP TA 1, M_DP_TB_1
□ Информация о положении отпаек M_ST_NA_1, M_ST_TA_1, M_ST_TB_1
\square Строка из 32 бит M_BO_NA_1, M_BO_TA_1, M_BO_TB_1 (если определено для конкретного проекта, см. 7.2.1.1)
\square Измеряемое значение, нормализованное M_ME_NA_1, M_ME_TA_1, M_ME_ND_1, M_ME_TD_1

□ Измеряемое зн	начение, масштабиро	ванное M_ME_NB_1, M_ME_TB_1, M_ME_TE_1
☐ Измеряемое зM_ME_TC_1, M_MI	-	формат с плавающей запятой M_ME_NC_1,
0		
Опрос станции		
🗵 – Общий		
🗵 – Группа 1	— Группа 7	□ – Группа 13
🗆 – Группа 2	🗆 – Группа 8	— Группа 14
🗆 – Группа 3	🗆 – Группа 9	□ – Группа 15
🗆 – Группа 4	🗆 – Группа 10	□ – Группа 16
🗆 – Группа 5	🗆 – Группа 11	□ – Адреса объектов информации,
🗆 – Группа 6	🗆 – Группа 12	принадлежащих каждой группе, должны быть приведены в отдельной таблице
Синхронизация в	ремени	
R – Синхрониза	ция времени	
Передача команд	l	
🗵 Прямая перед	ача команд	
□ Прямая переда	ача команд уставки	
🗵 Передача ком	анд с предварительн	ым выбором
□ Передача кома	нд уставки с предвар	рительным выбором
□ Использование	e C_SE_ACTTERM	
	•	еления длительности выходного импульса прибора, по умолчанию 2 сек.)
	ульс (длительность 1 ульс (длительность 5	•
⊠ Постоянный в	ыход (удержание до і	получения команды на отключение)

Передача интегральных сумм

□ Режим А: Местная фиксация со спорадической передачей
□ Режим В: Местная фиксация с опросом счетчика
□ Режим С: Фиксация и передача при помощи команд опроса счетчика
□ Режим D: Фиксация командой опроса счетчика, фиксированные значения сообщаются спорадически
□ Считывание счетчика
□ Фиксация счетчика без сброса
□ Фиксация счетчика со сбросом
□ Сброс счетчика
R – Синхронизация времениR – Запрос счетчиков группы 1
□ Запрос счетчиков группы 2
□ Запрос счетчиков группы 3
□ Запрос счетчиков группы 4
Загрузка параметра
□ Пороговое значение величины
□ Коэффициент сглаживания
□ Нижний предел для передачи значений измеряемой величины
□ Верхний предел для передачи значений измеряемой величины
Активация параметра
□ Активация/деактивация постоянной циклической или периодической передачи адресованных объектов
Процедура тестирования
□ Процедура тестирования
Пересылка файлов

Пересыл	ка файлов в направлении контроля
X	Прозрачный файл
	Передача данных о повреждениях от аппаратуры защиты
	Передача последовательности событий
	Передача последовательности регистрируемых аналоговых величин
Пересыл	ка файлов в направлении управления
□ Прозр	ачный файл
Фоново	е сканирование
⊠ Фоноі	вое сканирование
Фоновое	сканирование – приоритет передачи самый низкий.

Типы срабатывания фонового сканирования:

- периодически с признаком «фоновое сканирование» (период передачи настраивается отдельно от периодов передачи по периодическому алгоритму)
- адаптивное –любое изменение параметра влечет его передачу с признаком «фоновое сканирование»
- при изменении актуальности изменение бита IV NT (если они включены в настройках) у параметра влечет его передачу с признаком «фоновое сканирование».

Получение задержки передачи

ГОСТ Р МЭК 60870-5-101-2006		ГОСТ Р МЭК 60870-5-104-2004			
	Получение	задержки		Получение	задержки
передачи		передачи			

Далее только для ГОСТ Р МЭК 60870-5-104-2004:

Определение таймаутов

Параметр	Значение по умолчанию	Примечания	Выбранное значение
t_0	30 c	Таймаут при установлении соединения	
t_1	15 с	Таймаут при посылке или тестировании APDU	15
t ₂	10 с	Таймаут для подтверждения в случае отсутствия сообщения с данными t2 <t1< td=""><td>10</td></t1<>	10
t ₃	20 c	Таймаут для посылки блоков тестирования в случае долгого простоя	20

Максимальный диапазон значений для всех таймаутов равен: от 1 до 255 секунд с точностью $1 \, \mathrm{c}$.

Максимальное число k неподтвержденных APDU формата I и последних подтверждающих APDU (w):

	Значение	
Параметр	по	Примечания
	умолчанию	
V	1 APDU	Максимальная разность переменной состояния передачи и номера
l K	1 APDU	последнего подтвержденного APDU
W	1 APDU	Последнее подтверждение после приема w APDU формата I

Параметры K и W не подлежат изменению.

Номер порта

Параметр	Значение	Примечания
Номер порта	2404	Настраиваемый

Настройки ІР

	IP адрес	адрес канального уровня
ЭНИП-2 по умолчанию	192.168.0.10	
Клиент №1	-	1
Клиент №2	-	1
Клиент №3	-	1
Клиент №4	-	1

Приложение Г. ЭНИП-2: описание протокола SNMP

В рамках протокола SNMP ЭНИП-2 поддерживает передачу следующей базы управляющей информации или Management Information Base (MIB).

Описание SNMP для модификации ЭНИП-2-...-X1:

MIB-объект	Описание	Значение
SysDescr.0	Наименование устройства	Intelligent electronic device ENIP-2 (v2)
SysUpTime.0	Время работы	XX hours, XX minutes, XX seconds
SysContact.0		
SysName.0		ENIP-2(v2)-45/100-220- A3E4-21
ifNumber.0	Количество интерфейсов	5
ifIndex1	Номер интерфейса 1	1
ifIndex2	Номер интерфейса 2	2
ifIndex3	Номер интерфейса 3	3
ifIndex4	Номер интерфейса 4	4
ifIndex5	Номер интерфейса 5	5
ifName1	Описание интерфейса 1	Eth0
ifName2	Описание интерфейса 2	rs485-1
ifName3	Описание интерфейса 3	rs485-2
ifName4	Описание интерфейса 4	rs485-3
ifName5	Описание интерфейса 5	USB
ifInOctets1	Принято байт по интерфейсу 1	
ifInOctets2	Принято байт по интерфейсу 2	
ifInOctets3	Принято байт по интерфейсу 3	
ifInOctets4	Принято байт по интерфейсу 4	
ifInOctets5	Принято байт по интерфейсу 5	
ifOutOctets1	Отправлено байт по интерфейсу 1	
ifOutOctets2	Отправлено байт по интерфейсу 2	
ifOutOctets3	Отправлено байт по интерфейсу 3	
ifOutOctets4	Отправлено байт по интерфейсу 4	
ifOutOctets5	Отправлено байт по интерфейсу 5	
errorADC	Неисправность АЦП/Отсутствие внешнего питания	1, при наличии ошибки

errorEth	Нет связи с портом Ethernet	1, при наличии ошибки
errorRTC	Неисправность внутренних часов	1, при наличии ошибки
errorBAT	Напряжение батареи меньше 2,5 В	1, при наличии ошибки
errorAuth	Более неудачных 5 попыток авторизации в течение минуты, авторизация заблокирована на минуту	1, при наличии ошибки
error2ETH	Нет связи по шлейфу (для ЭНИП-2 с двумя портами Ethernet)	1, при наличии ошибки
errorSync	Отсутствует синхронизация времени (если настроен период актуальности синхронизации)	1, при наличии ошибки
errorExt	Ошибка опроса внешних устройств	1, при наличии ошибки
errorDO	Неисправность канала ТУ	1, при наличии ошибки
dio1	Состояние DIO1	
dio2	Состояние DIO2	
dio3	Состояние DIO3	
dio4	Состояние DIO4	
dio5	Состояние DIO5	
dio6	Состояние DIO6	
dio7	Состояние DIO7	
dio8	Состояние DIO8	
dio9	Состояние DIO9	
dio10	Состояние DIO10	
dio11	Состояние DIO11	
dio12	Состояние DIO12	
dio13	Состояние DIO13	
dio14	Состояние DIO14	
dio15	Состояние DIO15	
dio16 dio17	Состояние DIO16	
dio18	Состояние DIO17	
dio19	Состояние DIO18 Состояние DIO19	
dio20	Состояние DIO19	
dio21	Состояние DIO20 Состояние DIO21	
dio22	Состояние DIO21	
dio23	Состояние DIO22	
dio24	Состояние DIO23	
dio25	Состояние DIO25	
dio26	Состояние DIO26	
dio27	Состояние DIO27	
dio28	Состояние DIO28	
dio29	Состояние DIO29	
dio30	Состояние DIO30	
dio31	Состояние DIO31	
dio32	Состояние DIO32	
voltagePhaseA	Ua	Значение параметра
voltagePhaseB.	Ub	Значение параметра
voltagePhaseC	Uc	Значение параметра

volta a Dhaca A	II desires en entre	2
voltagePhaseAverage	U фазное среднее	Значение параметра
voltageLineAB	Uab	Значение параметра
voltageLineSC	Ubc Uca	Значение параметра
voltageLineCA		Значение параметра
voltageLineAverage currentPhaseA	U линейное среднее	Значение параметра
currentPhaseB	la	Значение параметра
currentPhaseC	lb	Значение параметра
	lc Lenguage	Значение параметра
currentPhaseAverage powerActiveA	I средний Ра	Значение параметра
powerActiveA	Pb	Значение параметра
powerActiveC	Pc	Значение параметра
powerActiveCotal		Значение параметра
powerReactiveA	Р суммарная	Значение параметра
powerReactiveA	Qa Ob	Значение параметра
powerReactiveC	Qb Oc	Значение параметра
powerReactiveC	Qc	Значение параметра Значение параметра
powerApparentA	Q суммарная Sa	
powerApparentB	Sb	Значение параметра Значение параметра
powerApparentC	Sc	Значение параметра
powerApparentTotal	S суммарная	Значение параметра
voltageH1PhaseA.	5 суммарная Ua1	Значение параметра
voltageH1PhaseB.	Ub1	Значение параметра
voltageH1PhaseC	Uc1	Значение параметра
voltageH1PhaseAverage		Значение параметра
voltageH1LineAB	U1 фазное среднее Uab1	Значение параметра
voltageH1LineBC	Ubc1	Значение параметра
voltageH1LineCA	Uca1	Значение параметра
voltageH1LineAverage	U1 линейное среднее	Значение параметра
currentH1PhaseA	Іа1	Значение параметра
currentH1PhaseB	lb1	Значение параметра
currentH1PhaseC	lc1	Значение параметра
currentH1PhaseAverage	I1 средний	Значение параметра
powerH1ActiveA	Pa1	Значение параметра
powerH1ActiveB	Pb1	Значение параметра
powerH1ActiveC	Pc1	Значение параметра
powerH1ActiveTotal	Р1 суммарная	Значение параметра
powerH1ReactiveA	Qa1	Значение параметра
powerH1ReactiveB	Qb1	Значение параметра
powerH1ReactiveC	Qc1	Значение параметра
powerH1ReactiveTotal	Q1 суммарная	Значение параметра
powerH1ApparentA	Sa1	Значение параметра
powerH1ApparentB	Sb1	Значение параметра
powerH1ApparentC	Sc1	Значение параметра
powerH1ApparentTotal	S1 суммарная	Значение параметра
phsA	угол ф, фаза А	Значение параметра
phsB	угол ф, фаза В	Значение параметра
phsC	угол ф, фаза С	Значение параметра
phsTotal	угол ф, общий	Значение параметра
Frequency	F	Значение параметра
	U0 - напряжение нулевой	_
voltageZero	последовательности	Значение параметра

U1 - напряжение прямой последовательности	Значение параметра
U2 - напряжение обратной последовательности	Значение параметра
KuU - коэффициент несимметрии по напряжению	Значение параметра
KdU - коэффициент искажения по напряжению	Значение параметра
IO - ток нулевой последовательности	Значение параметра
I1 - ток прямой последовательности	Значение параметра
I2 - ток обратной последовательности	Значение параметра
Kul - коэффициент несимметрии по току	Значение параметра
Kdl - коэффициент искажения по току	Значение параметра
THD - коэффициент гармонических искажений	Значение параметра
T - температура внутри корпуса	Значение параметра
Ua внешнего устройства	Значение параметра
Ub внешнего устройства	Значение параметра
Uc внешнего устройства	Значение параметра
10 - ток нулевой последовательности внешнего устройства	Значение параметра
U0 - напряжение нулевой последовательности внешнего устройства	Значение параметра
WP+ энергия активная, потребленная	Значение параметра
WP- энергия активная, возвращенная	Значение параметра
WQ+ энергия реактивная, потребленная	Значение параметра
WQ- энергия реактивная, возвращенная	Значение параметра
	Последовательности И2 - напряжение обратной последовательности КиU - коэффициент несимметрии по напряжению КdU - коэффициент искажения по напряжению 10 - ток нулевой последовательности 11 - ток прямой последовательности КиI - коэффициент несимметрии по току КdI - коэффициент несимметрии по току КdI - коэффициент несимметрии по току ТНD - коэффициент гармонических искажений Т - температура внутри корпуса Иа внешнего устройства Ис внешнего устройства Ис внешнего устройства Ио - ток нулевой последовательности внешнего устройства Ио - напряжение нулевой последовательности внешнего устройства И0 - напряжение нулевой последовательности внешнего устройства WP+ энергия активная, потребленная WP- энергия реактивная, потребленная WQ+ энергия реактивная, потребленная

Описание SNMP для модификации ЭНИП-2-...-X3:

MIB-объект	Описание	Значение
System		
SysDescr.0	Наименование устройства	ENIP-2
SysUpTime.0	Время работы	XX hours, XX minutes, XX seconds

SysContact.0

SysName.0

Interfaces		
ifNumber.0	Количество интерфейсов	5
ifIndex1	Номер интерфейса 1	1
ifIndex2	Номер интерфейса 2	2
ifIndex3	Номер интерфейса 3	3
ifIndex4		4
ifIndex5	Номер интерфейса 4	5
ifName1	Номер интерфейса 5	
	Описание интерфейса 1	GPS(internal)
ifName2	Описание интерфейса 2	Rs232
ifName3	Описание интерфейса 3	Ethernet-1
ifName4	Описание интерфейса 4	Ethernet-2
ifName5	Описание интерфейса 5	Can
iflnOctets1	Принято байт по интерфейсу 1	
iflnOctets2	Принято байт по интерфейсу 2	
ifInOctets3	Принято байт по интерфейсу 3	
iflnOctets4	Принято байт по интерфейсу 4	
iflnOctets5	Принято байт по интерфейсу 5	
ifOutOctets1	Отправлено байт по интерфейсу 1	
ifOutOctets2	Отправлено байт по интерфейсу 2	
ifOutOctets3	Отправлено байт по интерфейсу 3	
ifOutOctets4	Отправлено байт по интерфейсу 4	
ifOutOctets5	Отправлено байт по интерфейсу 5	
Diagnostic		
diagSerialNumers	Серийный номер устройства	s/n
diagFirmware	Версия прошивки	f/w version
diagBKVsynh	Состояние синхронизации часов	
Discrete signals		
numAllTC	Количество дискретных сигналов	5 или 8
tcTable:	Таблица дискретных сигналов	
tclndex	Номер дискретного сигнала	
tcParameter	Состояние дискретного сигнала	
Measurements		
numAllTI	Количество аналоговых параметров	
tiTable:	Таблица аналоговых параметров	
tilndex	Номер параметра	
tiParameter	Значение параметра	
tiTime	Метка времени	
descr	Название параметра	
GPS Status		
gpsStatusLatitude	Широта	
gpsStatusLongitude	Долгота	
gpsStatusAltitude	Высота	
gpsStatusPDOP	Значение параметра PDOP	
gpsStatusHDOP	Значение параметра HDOP	
gpsStatusVDOP	Значение параметра VDOP	
gpsStatusTDOP	Значение параметра TDOP	
gpsStatusTemperature	Температура модуля GPS	
gpsDecodingStatus	Статус GPS	
gpsGetTime	Состояние синхронизации времени	
21-2-2	модуля	

gpsGetUTCinfo	Состояние синхронизации времени устройства		
gpsStatusNumSVsolution	Число спутников		
gpsStatusNumTrackSV	Число используемых спутников		
gpsSatTrackingTable	Таблица информации по каждому спутнику		

Приложение Д. ЭНИП-2: протокол связи МЭК 61850 8-1

Настоящий документ распространяется на ЭНИП-2-...-X1 с версией встроенного программного обеспечения не ниже 2.0.0.6.

Внимание! Наличие поддержки протокола определяется при заказе прибора (доп. Опция). Если опция ES61850.enip - активация МЭК 61850 приобретается вместе с прибором, то протокол будет уже активирован при производстве.

Также в дальнейшем можно отдельно приобрести активацию и активировать поддержку протокола на месте.

Нижеприведенные декларации соглашений для протокола МЭК 61850 в ЭНИП-2 представлены в виде отдельных файлов, являющимися приложениями к данному Руководству:

- MICS Model Implementation Conformance Statement;
- PICS Protocol Implementation Conformance Statement;
- PIXIT Protocol Implementation Extra Information for Testing;
- TICS TISSUES Implementation Conformance Statement.

Доступные в ЭНИП-2 параметры приведены в таблице Д.1.1.

Таблица Д.1.1 – Параметры МЭК 61850

IEC 61850	Параметр
MMXU1.PhV.phsA	Ua
MMXU1.PhV.phsB	Ub
MMXU1.PhV.phsC	Uc
MMXU1.PhV.net	U фазное среднее
MMXU1.PPV.phsAB	Uab
MMXU1.PPV.phsBC	Ubc
MMXU1.PPV.phsCA	Uca
MMXU1.A.phsA	la
MMXU1.A.phsB	Ib
MMXU1.A.phsC	Ic
MMXU1.A.net	I средний

IEC 61850	Параметр		
MMXU1.W.phsA	Pa		
MMXU1.W.phsB	Pb		
MMXU1.W.phsC	Pc		
MMXU1.TotW	Р суммарная		
MMXU1.VAr.phsA	Qa		
MMXU1.VAr.phsB	Qb		
MMXU1.VAr.phsC	Qc		
MMXU1.TotVAr	Q суммарная		
MMXU1.VA.phsA	Sa		
MMXU1.VA.phsB	Sb		
MMXU1.VA.phsC	Sc		
MMXU1.TotVA	S суммарная		
MMXU1.PF.phsA	соѕфа		
MMXU1.PF.phsB	cosφb		
MMXU1.PF.phsC	cosφc		
MMXU1.TotPF	cosф средний		
MMXU1.Hz	f		
MSQI1.SeqV.c1	Напряжение прямой последовательности		
MSQI1.SeqV.c2	Напряжение обратной последовательности		
MSQI1.SeqV.c3	Напряжение нулевой последовательности		
MSQI1.lmbNgV	K2U - коэффициент несимметрии напряжения по		
	обратной последовательности		
MSQI1.SeqA.c1	Ток прямой последовательности		
MSQI1.SeqA.c2	Ток обратной последовательности		
MSQI1.SeqA.c3	Ток нулевой последовательности		
MSQI1.ImbNgA	K2I - коэффициент несимметрии тока по обратной		
	последовательности		
MMTR1.SupWh	Активная энергия в прямом направлении		
MMTR1.DmdWh	Активная энергия в обратном направлении		
MMTR1.SupVArh	Реактивная энергия в прямом направлении		
MMTR1.DmdVArh	Реактивная энергия в обратном направлении		
GGIO1.Ind1Ind32	Настраиваемые DIO		
DIO ЭНИП-211 по умолчани	110		
GGIO1.Ind1	Встроенный DO1		
GGIO1.Ind2	Встроенный DO2		
GGIO1.Ind3	Встроенный DO3		
GGIO1.Ind9	Встроенный DI1		
GGIO1.Ind10	Встроенный DI2		
GGIO1.Ind11	Встроенный DI3		
GGIO1.Ind12	Встроенный DI4		
DIO ЭНИП-221 по умолчанию			
GGIO1.Ind9	Встроенный DI1		
GGIO1.Ind10	Встроенный DI2		
GGIO1.Ind11	Встроенный DI3		

IEC 61850	Параметр
GGIO1.Ind12	Встроенный DI4
GGIO1.Ind13	Встроенный DI5
GGIO1.Ind14	Встроенный DI6
GGIO1.Ind15	Встроенный DI7
GGIO1.Ind16	Встроенный DI8

Выдержка из <u>PICS</u> на ЭНИП-2

Поддерживаемые сервисы протокола МЭК 61850 в соответствии с приложением A к стандарту IEC61850-7-2 first edition 2003-05 о положениях ACSI (Abstract Communication Service Interface):

Таблица Д.1.2 – Основные положения о соответствии

		Client/ subscribe r	Server/ publishe r	Value/ comments
Client-serve	er roles			
B11	Server side (of TWO-PARTY APPLICATION-ASSOCIATION)		•	
B12	Client side of (TWO-PARTY APPLICATION-ASSOCIATION)			
SCSMs supp	ported			
B21	SCSM: IEC 61850-8-1 used		•	
B22	SCSM: IEC 61850-9-1 used			
B23	SCSM: IEC 61850-9-2 used			
B24	SCSM: other			
Generic sub	Generic substation event model (GSE)			
B31	Publisher side		•	
B32	Subscriber side	•		
Transmissio	on of sampled value model (SVC)			
B41	Publisher side			
B42	Subscriber side			

• – поддерживаемые сервисы

Таблица Д.1.3 – Положения о соответствии ACSI моделей

		Client/ subscribe r	Server/ publishe r	Value/ comments
If Server side (B11) supported				
M1	Logical device		•	
M2	Logical node		•	

		Client/ subscribe r	Server/ publishe r	Value/ comments
M3	Data		•	
M4	Data set		•	
M5	Substitution			
M6	Setting group control			
	Reporting			
M7	Buffered report control		•	
M7-1	sequence-number		•	
M7-2	report-time-stamp		•	
M7-3	reason-for-inclusion		•	
M7-4	data-set-name		•	
M7-5	data-reference		•	
M7-6	buffer-overflow		•	
M7-7	entryID		•	
	conf_revision		•	
M7-8	BufTm		•	BufTm = 0
M7-9	IntgPd		•	
M7-10	GI		•	
M8	Unbuffered report control		•	
M8-1	sequence-number		•	
M8-2	report-time-stamp		•	
M8-3	reason-for-inclusion		•	
M8-4	data-set-name		•	
M8-5	data-reference		•	
	conf_revision		•	
M8-6	BufTm		•	BufTm = 0
M8-7	IntgPd		•	
M8-8	GI		•	
	Logging			
M9	Log control			
M9-1	IntgPd			
M10	Log			
M11	Control			
If GSE (B31	/B32) is supported			
M12	GOOSE	•	•	
M13	GSSE			
If SVC (B41	/B42) is supported			
M14	Multicast SVC			
M15	Unicast SVC			
	Client side (B11/B12) is supported			
M16	Time		•	Time source

		Client/ subscribe r	Server/ publishe r	Value/ comments
				with required accuracy shall be available.
M17	File Transfer			

- поддерживаемые сервисы

	иваемые сервисы	ACSI conn	4COB		
Таблица Д.1.4 – Положения о соответствии Services		AA: TP/MC	Client/ subscribe r	Server/ publish er	Comments
Server (Cla	use 6)				
S1	Server Directory	TP		•	
Application	association (Clause 7)				
S2	Associate			•	
S3	Abort			•	
S4	Release			•	
	vice (Clause 8)				
S5	LogicalDeviceDirectory	TP		•	
Logical nov	do (Clauso 0)				
S6	de (Clause 9)	TP			
S6 S7	LogicalNodeDirectory GetAllDataValues	TP		•	
3/	GELALIDALAVALUES	IF		•	
Data (Claus	se 10)				
S8	GetDataValues	TP		•	
S9	SetDataValues	TP		•	
S10	GetDataDirectory	TP		•	
S11	GetDataDefinition	TP		•	
Data set (C	lause 11)				
S12	GetDataSetValues	TP		•	
S13	SetDataSetValues	TP		•	
S14	CreateDataSet	TP		•	

TP

TP

TP

Substitution (Clause 12)

DeleteDataSet

SetDataValues

GetDataSetDirectory

S15

S16

S17

Services		AA: TP/MC	Client/ subscribe r	Server/ publish er	Comments
Setting group control (Clause 13)					
S18	SelectActiveSG	TP			
S19	SelectEditSG	TP			
S20	SetSGValues	TP			
S21	ConfirmEditSGValues	TP			
S22	GetSGValues	TP			
S23	GetSGCBValues	TP			
323	deiodebvalues	11			
Reporting ((Clause 14)				
	port control block (BRCB)				
S24	Report	TP		•	
S24-1	data-change (dchg)	.,		•	
S24-2	qchg-change (qchg)			•	
S24-3	data-update (dupd)			_	
S25	GetBRCBValues	TP		•	
S26	SetBRCBValues	TP		•	
	report control block (URCB)				
S27	Report	TP		•	
S27-1	data-change (dchg)	- ''		•	
S27-2	qchg-change (qchg)			•	
S27-3	data-update (dupd)				
S28	GetURCBValues	TP		•	
S29	SetURCBValues	TP		•	
327	Setonedvalues	11		•	
Logging (C	lause 14)				
Log contro					
S30	GetLCBValues	TP			
S31	SetLCBValues	TP			
Log	SetLebvatues				
S32	QueryLogByTime	TP			
S33	QueryLogAfter	TP			
S34	GetLogStatusValues	TP			
35 ,		• •			
Generic sul	ostation event model (GSE) (1	4 3 5 3 4)			
		1.3.3.3.1)			
GOOSE-CO	NTROL-BLOCK				
S35	SendGOOSEMessage	МС		•	IED supports GOOSE publish & subscriptio

Services		AA: TP/MC	Client/ subscribe	Server/ publish	Comments
			r	er	
S36	GetGoReference	TP			
S37	GetGOOSEElementNumber	TP			
S38	GetGoCBValues	TP		•	
S39	SetGoCBValues	TP		•	
GSSE-CON	TROL-BLOCK				
S40	SendGSSEMessage	MC			
S41	GetGsReference	TP			
S42	GetGSSEElementNumber	TP			
S43	GetGsCBValues	TP			
S44	SetGsCBValues	TP			

Transmission of sampled value model (SVC) (Clause 16)					
Multicast S	VC				
S45	SendMSVMessage	MC			
S46	GetMSVCBValues	TP			
S47	SetMSVCBValues	TP			
Unicast SV	C				
S48	SendUSVMessage	TP			
S49	GetUSVCBValues	TP			
S50	SetUSVCBValues	TP			

Control (17	.5.1)			
S51	Select	TP		
S52	SelectWithValue	TP	•	
S53	Cancel	TP	•	
S54	Operate	TP	•	
S55	CommandTermination	TP	•	
S56	TimeActivated-Operate	TP		

File transfer (Clause 20)					
S57	GetFile	TP			
S58	SetFile	TP			
S59	DeleteFile	TP			
S60	GetFileAttributeValues	TP			

Time (Clause 18)					
T1	Time resolution of internal clock	TP		1 ms	
T2	Time accuracy of internal clock	TP		1 ms	
Т3	Supported TimeStamp resolution	TP		1 ms	

• – поддерживаемые сервисы

Приложение E. Соответствие ЭНИП-2-...-X3 стандарту IEEE C37.118

ЭНИП-2 поддерживает передачу данных в соответствии с С37.118.2-2011. Перечень доступных для передачи параметров приведен в табл. 2.4.

Поддерживаются configuration frame CFG-1, CFG-2, CFG-3.

Темп передачи данных: 1, 2, 5, 10, 25, 50, 100 кадров в секунду.

Погрешность измерений

Допустимые пределы погрешностей измерений ЭНИП-2 в классе М в статических условиях:

Параметр	Диапазон изменения входного параметра	Пределы допускаемых погрешностей измерений УСВИ
Частота	4555 Гц	TVE ≤ 1%,
Напряжение	0,21,2 Uном	FE ≼0,001 Гц,
Ток	0,12 Іном	RFE <0,1 Γц/c,
Фазовый угол	-180180	абсолютная погрешность измерения угла $\Delta \delta$ $\leqslant 0,1^\circ$
Коэффициент гармонических составляющих (от 2 до 50 гармоники)	для УСВИ, устанавливаемых на стороне Uвн < 110 кВ: U = 0,1Uном	при Fs ≥ 25: TVE <1%, FE <0,025 Гц, при Fs < 10: TVE <1%, FE <0,005 Гц, абсолютная погрешность измерения угла Δδ ≤0,1°
Интергармоники	для УСВИ, устанавливаемых на стороне Uвн > 110 кВ: U = 0,02Uном	TVE ≤1,3%, FE ≤0,01 Гц, абсолютная погрешность измерения угла Δδ ≤0,1°

Примечание: TVE – полная погрешность измерения вектора, FE – погрешность измерения частоты, RFE – погрешность измерения скорости изменения частоты, Fs – темп передачи данных СВИ.

Допустимые пределы погрешностей измерений ЭНИП-2 в классе P в статических условиях

Параметр	Диапазон изменения входного параметра	Пределы допускаемых погрешностей измерений УСВИ
Частота	4652 Гц	
Амплитуда напряжения	0,51,4 Uном	
Амплитуда тока	0,12 Іном	TVE≤1%,
Фазовый угол	-180180	FE ≤0,005 Гц,
Коэффициент		RFE <0,4 Гц/с,
гармонических	II = 0.01 Huga	абсолютная погрешность измерения угла Δδ ≤0,1°
составляющих (от 2 до 50 гармоники)	U = 0,01 Uном	

Допустимые пределы погрешностей измерений ЭНИП-2 в классе М в динамических условиях

Параметр	Диапазон изменения входного параметра	Пределы допускаемых погрешностей измерений УСВИ
Модуляция амплитуды и	fm = 0,15 Гц	при Fs ≥ 25: TVE ≤ 3%, FE ≤ 0,3 Гц, RFE ≤ 14 Гц/с
фазы вектора (отдельно) (fшага = 0,2 Гц)		при Fs ≤ 10: TVE ≤ 3%, FE ≤ 0,12 Гц, RFE ≤ 2,3 Гц/с
Линейное изменение частоты	F = 4555 Γц (df/dt = ±1 Γц/c)	TVE ≤ 1%, FE ≤0,01 Гц, RFE ≤0,2 Гц/с интервал исключения, с: большее из (7/Fs, 0,14c)
Скачкообразное изменение амплитуды и фазы вектора (отдельно)	амплитуда: ±10%, (ka = 0,1) фаза: ±10° (kx = ±π/18)	TVE ≤ 1% при Тотклика большее из (7/Fs, 0,14c), FE ≤0,005 Гц при Тотклика = большее из (14/Fs, 0,28 c), RFE ≤ 0,2 Гц/с при Тотклика = большее из (14/Fs, 0,28 c), Треакции ≤ 0,25/Fs c, перерегулирование б ≤ 5%

Допустимые пределы погрешностей измерений ЭНИП-2 в классе P в динамических условиях

Папацет	Диапазон изменения	Пределы допускаемых погрешностей
Параметр	входного параметра	измерений УСВИ
Модуляция амплитуды и	Fm = 0,12 Гц	при Fs ≥ 25: TVE ≤ 3%, FE ≤ 0,06 Гц, RFE ≤ 2,3 Гц/с
фазы вектора (отдельно)	(fшага = 0,2 Гц)	при Fs ≤ 10: TVE ≤ 3%, FE ≤ 0,03 Гц, RFE ≤ 0,6 Гц/с
Линейное изменение	f = 4652 Гц	TVE ≤ 1%, FE ≤ 0,01 Γц, RFE ≤ 0,4 Γц/c
частоты	(df/dt = ±1 Γц/c)	интервал исключения, с: большее из (2/Fs, 0,04 c)
		TVE ≤ 1% при Тотклика = 0,04 c,
Скачкообразное изменение	2MBBUT/B2: ±109/ (k2 = 0.1):	FE ≤ 0,005 Гц при Тотклика = 0,09 с,
амплитуды и фазы	амплитуда: ±10% (ka = 0,1);	RFE ≤ 0,4 Гц/с при Тотклика = 0,12 с,
(отдельно)	фаза: $\pm 10^{\circ}$ (kx = $\pm \pi/18$)	Треакции ≤ 0,25/Fs c,
		перерегулирование б ≤ 5%

Математическое моделирование

Математическое моделирование ЭНИП может быть произведено с помощью математических программ Matlab, Mathcad, а также с помощью специализированного программного обеспечения.

Ниже приводятся необходимые зависимости для моделирования ЭНИП для аналоговой системы-прототипа.

Входной сигнал устройства $\mathit{X}(t)$ состоит из синусоидального сигнала промышленной частоты, экспоненциальной помехи и (N-2)-го числа высших гармоник

$$x(t) = \operatorname{Re}\left(\dot{\mathbf{X}}^{\mathrm{T}}e^{\mathbf{p}t}\right)$$
 или $x(t) = 0, 5(\dot{\mathbf{X}}^{\mathrm{T}}e^{\mathbf{p}t} + \overline{\mathbf{X}}^{\mathrm{T}}e^{\overline{\mathbf{p}}t})$,

где вектора комплексных амплитуд и частот входного сигнала $\dot{\mathbf{X}} = \begin{bmatrix} \dot{X}_0 & \dot{X}_1 & \dot{X}_2 & \dots & \dot{X}_{N-1} \end{bmatrix}^{\mathrm{T}}, \ \mathbf{p} = \begin{bmatrix} -\beta_0 & j\omega_1 & j2\omega_1 & \dots & j\left(N-1\right)\omega_1 \end{bmatrix}^{\mathrm{T}},$

 $\overline{\mathbf{X}}$, $\overline{\mathbf{p}}$ - комплексно-сопряженные векторы.

На вход усредняющего КИХ-фильтра подается сигнал $\dot{z}_{(t)}$, спектр которого относительно x(t) смещен влево вследствие перемножения на опорный сигнал $2e^{-j\omega_0 t}$

$$\dot{z}(t) = 2e^{-j\omega_0 t}x(t) = \dot{\mathbf{X}}^{\mathrm{T}}e^{(\mathbf{p}-\tilde{\mathbf{N}}j\omega_0)t} + \overline{\mathbf{X}}^{\mathrm{T}}e^{(\overline{\mathbf{p}}-\tilde{\mathbf{N}}j\omega_0)t}$$

где $\omega_0 = 2\pi 50$ рад/с, ${\bf C}$ - единичный вектор размерностью N .

Расчет реакции фильтра $\dot{y}(t)$ может быть произведен на основании следующих выражений

$$\dot{\mathbf{y}}(t) = \dot{\mathbf{Y}}_1(t)^{\mathrm{T}} e^{(\mathbf{p} - j\omega_0 \mathbf{C})t} + \dot{\mathbf{Y}}_2(t)^{\mathrm{T}} e^{(\mathbf{\bar{p}} - j\omega_0 \mathbf{C})t}$$

где
$$\dot{\mathbf{Y}}_1(t) = \operatorname{diag}(\dot{\mathbf{X}})K(\mathbf{p} - j\omega_0\mathbf{C}, t)$$
, $\dot{\mathbf{Y}}_2(t) = \operatorname{diag}(\mathbf{\overline{X}})K(\mathbf{\overline{p}} - j\omega_0\mathbf{C}, t)$, $\mathbf{C} = \begin{bmatrix} 1 \end{bmatrix}_N$.

Для более точного моделирования необходимо использовать дискретные модели сигналов и импульсных функций фильтров.

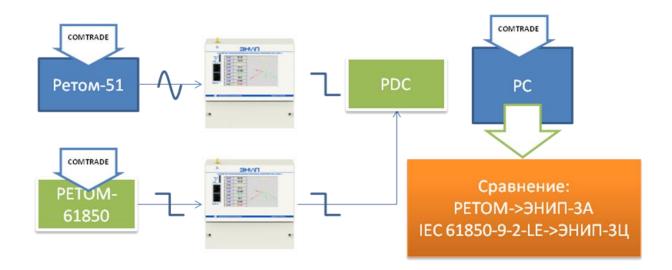
Статические характеристики

Метрологические характеристики ЭНИП определяются используемым алгоритмом обработки сигналов, прежде всего характеристиками усредняющих КИХ-фильтров, аналоговой подсистемой и АЦП.

Для автоматизации поверки и метрологических испытаний ЭНИП используется программно-технический комплекс (ПТК) "ES-TEST".

Используемое оборудование:

- 1. УППУ-МЭЗ.1 для испытаний ЭНИП-2-45(41),
- 2. РЕТОМ-61850 для испытаний ЭНИП-2-0.


Метрологические характеристики ЭНИП соответствуют заявленным и превосходят требования стандарта по точности и диапазонам измерения комплексных амплитуд тока и напряжения, частоты, допустимому уровню высших гармоник.

Динамические характеристики

Для испытаний ЭНИП на соответствие стандарту используется программнотехнический комплекс (ПТК) "ES-TEST".

Используемое оборудование:

- 1. PETOM-51 для испытаний ЭНИП-2-45(41),
- 2. РЕТОМ-61850 для испытаний ЭНИП-2-0.

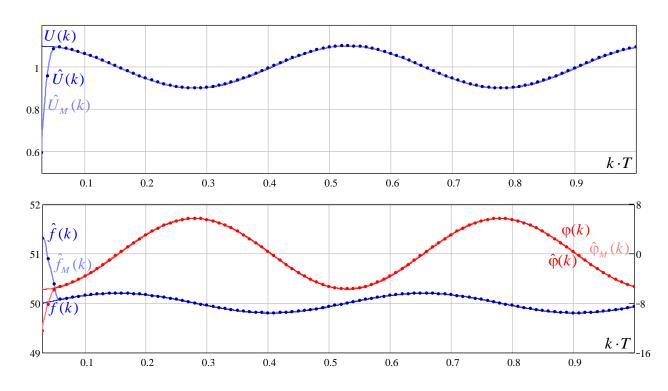
При проведении динамических тестов (испытаний) ЭНИП на испытательных установках PETOM-51 и PETOM-61850 производилось "проигрывание" специально подготовленных comtrade-файлов с входными сигналами, соответствующим тестам IEEE C37.118.1.

Входной сигнал ЭНИП-2-0 с цифровыми входами согласно IEC 61850-9-2LE, соответствующий входному напряжению или току, для трех динамических тестов описывается с помощью следующего выражения

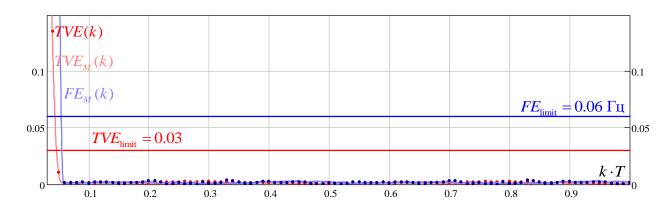
$$x(k) = X(k)\cos(\psi(k))$$
,

Первый динамический тест

В первом тесте dynamic compliance – measurement bandwidth огибающая входного сигнала ИЭУ X(k), полная фаза $\psi(k)$, начальная фаза и частота изменяются по периодическому закону и описываются с помощью следующих выражений


$$X(k) = X_m(1 + k_x \cos(\omega_x kT)), \ \psi(k) = \omega_0 t + k_a \cos(\omega_x kT - \pi),$$

$$\varphi(k) = k_a \cos(\omega_x kT - \pi), \ f(k) = \frac{\omega_0}{2\pi} - k_a \frac{\omega_x}{2\pi} \cos(\omega_x kT - \pi),$$


где $k_x=0,1(0);\;k_a=0,1;\;\omega_x=0,1\div 4\pi(10\pi)$, kT - дискретное время, $T=0,0005\;$ $\tilde{\mathbf{n}}$ - шаг дискретизации.

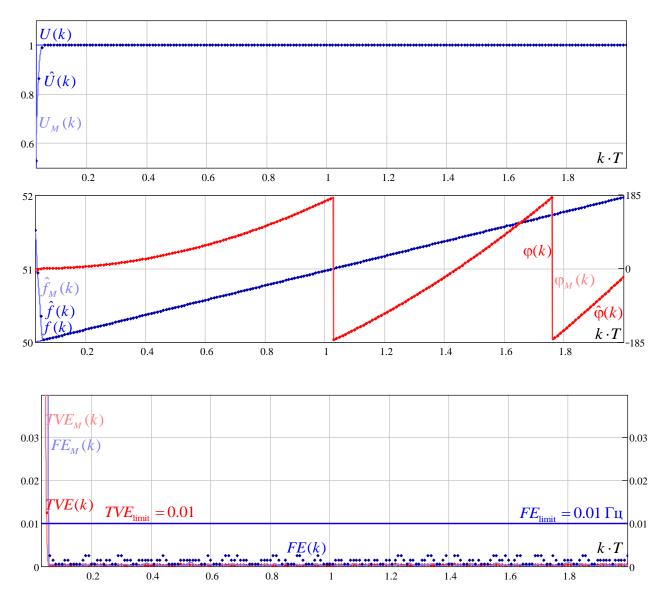
На рис. 20 представлены результаты испытаний ЭНИП-0 по первому тесту (class P) при $\omega_x=4\pi$, $k_x=0,1;\;k_a=0,1\;$ и при скорости передачи данных $F_s=100\;$ Гц.

На графике показаны относительное значение огибающей U(k), частоты f(k) и начальная фаза $\varphi(k)$ входного напряжения; $\hat{U}_M(k)$, $\hat{f}_M(k)$, $\hat{\varphi}_M(k)$ - результаты, полученные в результате математического моделирования, $\hat{U}(k)$, $\hat{f}(k)$, $\hat{\varphi}(k)$ - результаты измерений с помощью ЭНИП-2-0.

Полная погрешность измерения вектора напряжения TVE (Total vector error) и погрешность в измерении частоты FE (Frequency Measurement Error) в ЭНИПЦ значительно меньше допустимых значений.

Скорость изменения частоты (RFE, Rate of change of Frequency Error) во всех опытах первого теста, также как и TVE и FE, не превышает допустимых значений для ИЭУ классов РиМ.

Второй динамический тест


При испытаниях по второму тесту (dynamic compliance – performance during ramp of system frequency) огибающая входного сигнала неизменна, а частота изменяется по линейному закону

$$X(k) = X_m, \ \psi(k) = \omega_0 kT + \pi R_f (kT)^2,$$

$$\varphi(k) = \pi R_f (kT)^2, \ f(k) = \frac{\omega_0}{2\pi} + R_f kT,$$

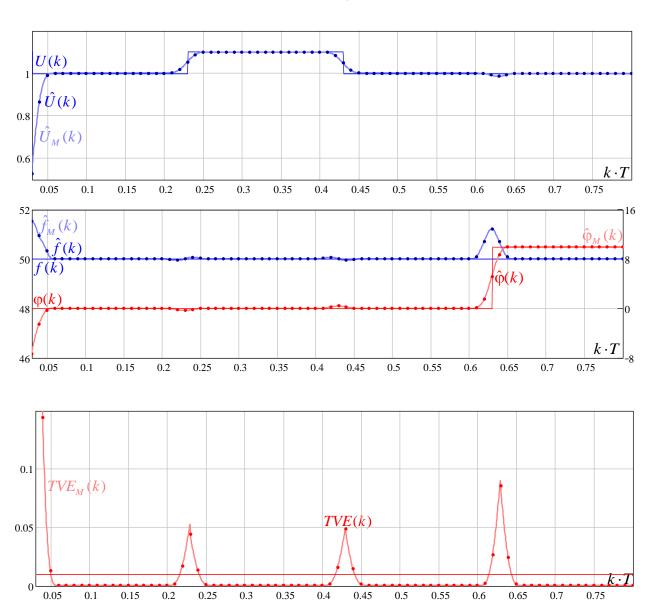
где
$$R_f=1$$
 Гц/с.

Результаты испытаний для ИЭУ (class P) при $F_s = 100 \,$ Гц:

Результатам испытаний ЭНИП-О по второму тесту: соответствие требованиям стандарта по TVE, FE и RFE (class P и class M).

Третий динамический тест

Математическое описание входного сигнала ИЭУ по испытаниям третьего теста (Dynamic compliance – performance under step changes in phase and magnitude)


$$X(k) = X_m[1 + k_x f_1(kT)], \ \psi(k) = \omega_0 kT + k_a f_1(k)$$

$$f_1(k) = 1(kT); k_x = 0.1; k_a = \pm \pi/18.$$

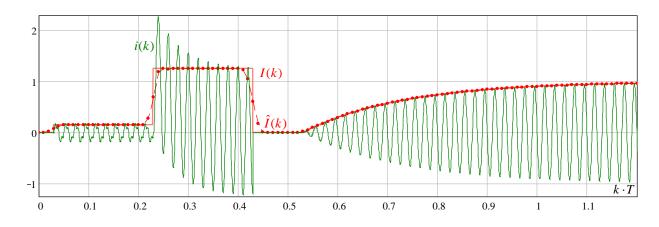
В ходе данных испытаний скачкообразно изменяется на 10~% амплитуда входного сигнала или на 10^{0} начальная фаза сигнала и определяются следующие параметры: время отклика (response time), время задержки (delay time), перерегулирование

(overshoot). В зависимости от скорости передачи данных накладываются ограничения на следующие параметры: TVE, FE и RFE.

Результаты испытаний для ЭНИП-2-0 при $F_s = 100$ Гц:

Результаты испытаний ЭНИП-2-0 по третьему тесту: соответствие требованиям стандарта при большинстве значений F_s . Таким образом, результаты испытаний подтвердили соответствие ЭНИП по всем статистическим и динамических характеристикам стандарта IEEE C37.118.1-2011.

Как следует из графиков при скачкообразном изменении амплитуды или фазы напряжения (тока) основной гармоники имеют место кратковременные "всплески" погрешностей измерения комплексных амплитуд (фазоров) тока (напряжения) основной гармоники и частоты сети. Еще в большей степени это проявляется при

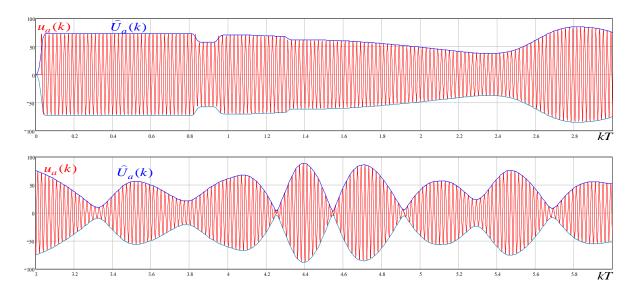

скачкообразном изменении амплитуды или начальной фазы токов или напряжений основной гармоники при электромагнитных переходных процессах или при включении установки под напряжение. Указанные явления неизбежны. Вопрос лишь в минимизации уровня данных погрешностей, их продолжительности или обеспечения достоверности измерений.

Дополнительные динамические испытания

Испытания при сигналах с известными законами изменения амплитуды, частоты и фазы основной гармоники

Ниже представлены результаты испытаний ЭНИП-2-0 при "проигрывании" comtrade-файла, в котором последовательно воспроизводятся несколько режимов с известными законами изменения амплитуды, частоты и фазы основной гармоники тока и напряжения.

На графике показаны мгновенный ток i(k), огибающая тока основной гармоники I(k) и ее оценка $\hat{I}(k)$ с помощью ЭНИП-0. Как следует из рис.26, при электромагнитных переходных процессах, сопровождающихся скачкообразным изменением амплитуды тока основной гармоники и наличием свободных составляющих переходного процесса, оценка амплитуды тока производится без наличия перерегулирования собственного переходного процесса в ИЭУ даже при наличии в токе апериодической составляющей.



Испытания при использовании comtrade-файлов реальных аварий в энергосистемах

При испытаниях ЭНИП необходимо использовать следующее оборудование: испытательные установки PETOM-51, PETOM-61850, на которых производится "проигрывание" comtrade-файлов реальных аварий в энергосистемах.

Данные ЭНИП фиксировались в PDC со встроенным ftp-сервером и на компьютере с установленным специализированным программным обеспечением.

Пример "проигрывания" одной из реальных аварий в энергосистеме и результат оценивания амплитуды напряжения:

Приложение Ж. Проверка соответствия программного обеспечения

В преобразователях ЭНИП-2 все измерения, вычисления и управление работой выполняет микроконтроллер, в который в процессе изготовления преобразователя ЭНИП-2 загружается встроенное программное обеспечение «Преобразователь измерительный многофункциональный ЭНИП-2» (микропрограмма), которое является метрологически значимым.

Влияние программного обеспечения (далее ПО) учтено при нормировании метрологических и технических характеристик преобразователей ЭНИП-2. При этом инструментальную погрешность средства измерения и погрешность, вносимую ПО не разделяют.

Встроенное ПО аппаратно защищено от случайных и преднамеренных изменений, что исключает возможность его несанкционированной настройки и вмешательства, приводящих к искажению результатов измерений. Для защиты встроенного ПО применяются следующие меры: отсутствие возможности изменения ПО без вскрытия пломбируемой крышки преобразователей ЭНИП-2, наличие аппаратной защиты от считывания микропрограммы из памяти микроконтроллера (обеспечивается возможностями микроконтроллера), наличие встроенного средства загрузки ПО (bootloader).

Идентификационные данные встроенного ПО указаны в таблице Ж.1.

Таблица Ж.1 - Идентификационные данные ПО

	Значение		
Идентификационные данные (признаки)	Для модификаций ЭНИП-2X1, ЭНИП-232	Для модификаций ЭНИП-2X3	
Идентификационное наименование ПО	ENIP2Meter.mhx	ENIP3Meter.mhx	
Номер версии (идентификационный номер) ПО	1.0	не ниже 1.0	
Цифровой идентификатор ПО	C63CE872	4DDB9686	
Алгоритм вычисления цифрового идентификатора ПО	CRC32	CRC32	

Уровень защиты ПО от непреднамеренных и преднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014.

Подтверждение соответствия встроенного программного обеспечения преобразователей ЭНИП-2 выполняют путем контроля идентификационных данных ПО:

- наименования метрологически значимого ПО;
- версии метрологически значимого ПО;

контрольной суммы метрологически значимого ПО.

Идентификационные данные метрологически незначимого ПО контролю не подлежат.

Для идентификации ПО необходимо подключить преобразователь ЭНИП-2 к ПК по интерфейсу USB и запустить программу «EsBootloader».

Для соединения с преобразователем ЭНИП-2 в окне программы необходимо нажать кнопку «Соnnect» и перейти во вкладку «Служебные операции». Далее нажать кнопку «Считать метрологически значимую часть ПО».

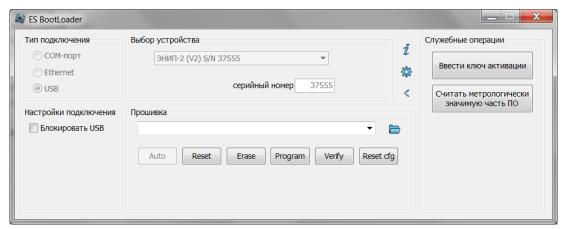
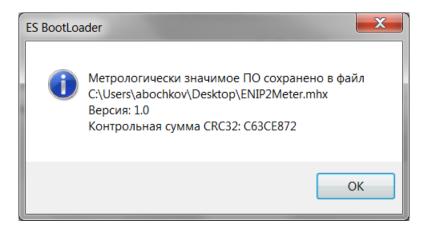
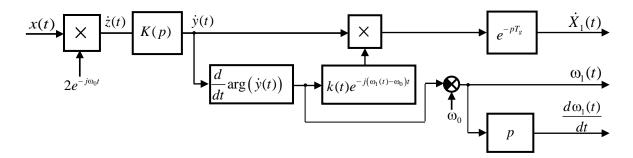


Рисунок E1.1. ПО «EsBootloader»

ПО «EsBootloader» считает информацию с преобразователя ЭНИП-2 и создаст на ПК файл, содержащий метрологически значимую часть микропрограммы. При этом появится окно, в котором содержатся необходимые идентификационные данные ПО (наименование, версия, контрольная сумма).




Рисунок E1.2. Предупреждение в ПО «EsBootloader»

Приложение И. Алгоритмы обработки сигналов в ЭНИП-2-...-Х3

Измерение комплексных амплитуд (фазоров)

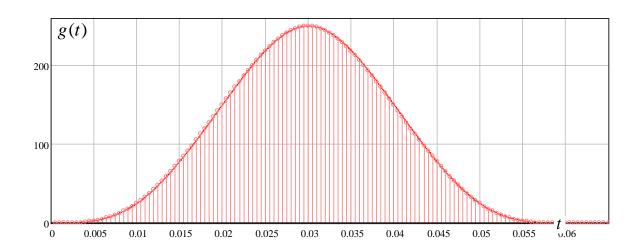
Ниже рассматривается упрощенное описание алгоритма обработки ЭНИП для аналоговой системы-прототипа.

Структурная схема алгоритма обработки сигналов представлена ниже.

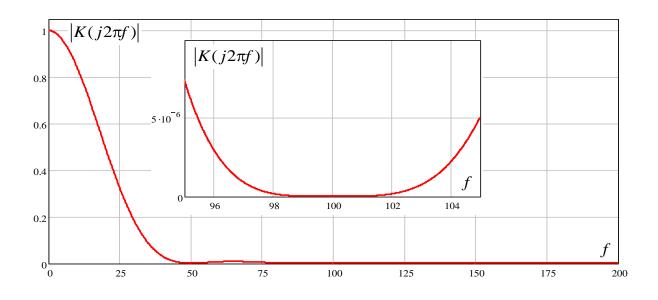
Приведенный алгоритм обработки сигналов PMU по сравнению с рекомендуемым в IEEE C37.118.1 модернизирован с целью более точной оценки комплексной амплитуды основной гармоники \dot{X}_1 и ее частоты ω_1 .

Комплексная амплитуда фазного напряжения или тока, далее обозначаемая как $\dot{X}_1 = X_{m1} e^{-j\phi_1}$, вследствие изменения параметров режима энергосистемы является функцией времени $\dot{X}_1(t) = X_{m1}(t) e^{-j\phi_1(t)}$. Другое представление комплексной амплитуды связано с представлением синхрофазора в виде действительной или мнимой составляющей $\dot{X}_1(t) = X_{c1}(t) + jX_{c1}(t)$.

Математическое описание усредняющего КИХ-фильтра. Импульсная функция (временное окно)


$$g(t) = \operatorname{Re}\left(\dot{\mathbf{G}}^{\mathrm{T}}e^{\mathbf{q}t} - \dot{\mathbf{G}}^{\mathrm{T}}e^{\mathbf{q}(t-T_{1})}\right),\tag{1}$$

где
$$\dot{\mathbf{G}} = \left[\dot{G}_m\right]_M = \left[k_m e^{-j\phi_m}\right]_M$$
, $\mathbf{q} = \left[\rho_m\right]_M = \left[-\alpha_m + jw_m\right]_M$, $\dot{\mathbf{G}}' = \mathrm{diag}(\dot{\mathbf{G}})e^{\mathbf{q}T_1}$, T_1 - длительность (длина) импульсной функции фильтра.


Количество составляющих M импульсной функции фильтра g(t) в ЭНИП - не более от 2 до 5 (не более 10 параметров). Это дает возможность реализации как широко применяемых временных окон (Ханна, Хэмминга, Блэкмана, Нуталла и других), временных окон, рекомендованным стандартом IEEE C37.118.1, так и специально синтезированных для ЭНИП временных окон. Для синтеза временных окон

применяется специально разработанный метод синтеза, основанный на применении спектральных представлений преобразования Лапласа и многокритериальной оптимизации. Применение данного метода позволяет реализовать робастные системы, обеспечивающие заданные статические и динамические характеристики устройства синхронизированных векторных измерений при заданных диапазонах изменения параметров полезного сигнала и помехи.

На рисунке указано временное, используемое по умолчанию.

Амплитудно-частотная характеристика фильтра, соответствующая временному окну, приведена ниже.

Передаточная функция аналогового фильтра-прототипа (1)

$$K(p) = \frac{1}{2} \sum_{m=1}^{M} \left(\frac{\dot{G}_{m}}{p - \rho_{m}} + \frac{\overline{G}_{m}}{p - \overline{\rho}_{m}} - \frac{\dot{G}_{m}'}{p - \rho_{m}} e^{-pT_{1}} - \frac{\overline{G}_{m}'}{p - \overline{\rho}_{m}} e^{-pT_{1}} \right)$$

Для математического моделирования и анализа качества обработки сигналов удобно использовать зависимую от времени передаточную функция фильтра

$$K(p,t) = \int_{0}^{t} g(\tau)e^{-p\tau}d\tau$$

Для импульсной функции вида (1) выражение для зависимой от времени передаточной функции фильтра

$$K(p,t) = \frac{1}{2} \sum_{m=1}^{M} \left(\frac{\dot{G}_m}{p - \rho_m} \left(1 - e^{-(p - \rho_m)t} \right) + \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{G}_m}{p - \overline{\rho}_m} \left(1 - e^{-(p - \overline{\rho}_m)t} \right) - \frac{\overline{$$

$$-\frac{\dot{G}_{m}^{'}}{p-\rho_{m}}\left(1-e^{-(p-\rho_{m})(t-T_{1})}\right)e^{-pT_{1}}-\frac{\overline{G}_{m}^{'}}{p-\overline{\rho}_{m}}\left(1-e^{-(p-\overline{\rho}_{m})(t-T_{1})}\right)e^{-pT_{1}}$$

Оценка частоты энергосистемы производится на основании следующего алгоритма

$$\omega_1(t) = \omega_0 - \frac{\frac{dy_c(t)}{dt}y_s(t) - \frac{dy_s(t)}{dt}y_c(t)}{y_c^2(t) + y_s^2(t)},$$

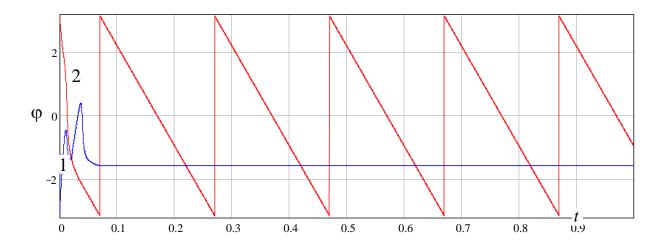
где
$$\dot{y}(t) = y_c(t) + jy_s(t)$$
.

Множитель k(t) для корректировки измерения модуля комплексной амплитуды полезного сигнала, определяется на основании следующей зависимости

$$k(t) = \left| K(j(\omega_0 - \omega_1(t)))^{-1} \right|. \tag{2}$$

В ЭНИП используется аппроксимация указанной зависимости (2).

При подаче на вход ЭНИП синусоидального сигнала с частотой, отличной от номинального значения 50 Гц, на выходе усредняющего фильтра в установившемся режиме работы вместо постоянного значения комплексной амплитуды сигнала получим низкочастотный сигнал с частотой, равный разности текущей частоты $\omega_1(t)$ и номинальной частоты ω_0 . Поэтому оценка начальной фазы будет производиться с погрешностью. Но необходимо учитывать, что в СМПР (WAMS) производится


вычисление разности векторов от двух устройств синхронизированных векторных измерений. При одинаковой частоте от двух УСВИ данные вычисления будут производиться правильно.

С целью повышения точности измерения начальной фазы в ЭНИП предусмотрена коррекция измеренных значений синхрофазоров путем перемножения выходного сигнала усредняющего КИХ-фильтра на опорный сигнал $e^{-j(\omega_1(t)-\omega_0)t}$. Данная возможность задается при конфигурировании ЭНИП. В целях совместимости с другими устройствами синхронизированных векторных измерений, реализованных строго в соответствии со стандартом IEEE C37.118.2, данная операция может быть при настройке ЭНИП исключена.

Ниже приведены графики оценки начальной фазы сигнала при подаче на вход ЭНИП синусоидального сигнала

$$x(t) = X_m \cos(2\pi 45 - 0.5\pi)$$

при наличии (кривая 1) и отсутствии коррекции оценки начальной фазы сигнала ϕ (кривая 2)

Для правильной оценки комплексных амплитуд токов и напряжений при электромеханических переходных процессах, а также при плавном изменении нагрузки и при работе режимной автоматики, в устройствах синхронизированных векторных измерений необходимо учитывать групповое время запаздывания, создаваемого усредняющими КИХ-фильтрами. При этом обязательным условием для точной работы УСВИ является линейность фазо-частотной характеристики фильтра в диапазоне частот от 0 до 5 Гц. Групповое время задержки усредняющего КИХ-фильтра, используемого по умолчанию, составляет 30 мс.

Специально разработанный метод синтеза временных окон, усредняющих КИХ-фильтров позволяет при синтезе фильтров минимизировать групповое время задержки фильтров.

Соответствие стандарту IEEE С37.118.1

ЭНИП соответствует требованиям IEEE С37.118.1 по требованиям к статическим и динамическим характеристикам устройств синхронизированных векторных измерений.

Статические характеристики ЭНИП соответствуют или превосходят требования стандарта IEEE C37.118.1 по точности и диапазонам измерения комплексных амплитуд тока и напряжения, частоты, допустимому уровню высших гармоник.

В Приложении Е приведены результаты математического моделирования и испытаний ЭНИП на соответствие требованиям стандарта IEEE C37.118.1.

При разработке интеллектуального электронного устройства ЭНИП были учтены как требования стандарта IEEE C37.118.1, так и нестационарный характер входных сигналов ИЭУ – устройство отстроено от помех в виде свободных составляющих электромагнитных переходных процессов и высших гармоник и обеспечивает требуемую точность измерения векторов тока и напряжения при изменении частоты энергосистемы, а также при изменении огибающих токов и напряжений основной гармоники в условиях электромеханических переходных процессов в энергосистеме, при изменении нагрузки, вследствие работы АРВ и иных устройств автоматики энергосистем. В Приложении Б приведены результаты испытаний ЭНИП при "проигрывании" соmtrade-файлов, соответствующих реальным авариям в энергосистемах, а также специально смоделированных электромагнитных и электромеханических переходных процессов.

Алгоритмы измерения параметров режима энергосистемы по основной гармонике

Вычисление параметров режима энергосистемы в ЭНИП производится на основании измеренных комплексных амплитуд токов и напряжений. В ЭНИП производится измерение как амплитуд и фаз комплексных амплитуд фазных токов и напряжений, так и их вещественных и мнимых составляющих

$$\begin{split} \dot{I}_{a} &= I_{m_{a}}e^{j\phi_{a}} = I_{1a} + jI_{2a}, \ \dot{I}_{b} = I_{m_{b}}e^{j\phi_{b}} = I_{1b} + jI_{2b}, \ \dot{I}_{c} = I_{m_{c}}e^{j\phi_{c}} = I_{1c} + jI_{2c}, \\ \dot{U}_{a} &= U_{m_{a}}e^{j\phi_{a}} = U_{1a} + jU_{2a}, \\ \dot{U}_{c} &= U_{m_{c}}e^{j\phi_{c}} = U_{1c} + jU_{2c}. \end{split}$$

Согласно IEEE С37.118.1 синхрофазоры тока и напряжения отличаются от комплексных амплитуд токов и напряжений на значение $\sqrt{2}$

$$\begin{split} &\dot{\mathbf{I}}_a = \dot{I}_a \, / \, \sqrt{2} \, , \quad \dot{\mathbf{I}}_b = \dot{I}_b \, / \, \sqrt{2} \, , \qquad \dot{\mathbf{I}}_c = \dot{I}_c \, / \, \sqrt{2} \, , \quad \dot{\mathbf{U}}_a = \dot{U}_a \, / \, \sqrt{2} \, , \quad \dot{\mathbf{U}}_b = \dot{U}_b \, / \, \sqrt{2} \, , \\ &\dot{\mathbf{U}}_c = \dot{U}_c \, / \, \sqrt{2} \, . \end{split}$$

Действующие значения токов I_a , I_b , I_c и напряжений U_a , U_b , U_c по основной гармонике вычисляются исходя из следующих известных выражений

$$I_a = I_{m_a} / \sqrt{2}$$
 , $I_b = I_{m_b} / \sqrt{2}$, $I_c = I_{m_c} / \sqrt{2}$,

$$U_a = U_{m_a} / \sqrt{2}$$
 , $U_b = U_{m_b} / \sqrt{2}$, $U_c = U_{m_c} / \sqrt{2}$.

Вычисление полной, активной и реактивной мощности основной гармоники по каждой фазе и суммарной трехфазной мощности производится на основании следующих выражений:

$$\begin{split} \dot{S}_{a} &= 0,5 \dot{U}_{a} \overline{I}_{a} = P_{a} + j Q_{a}, \ \dot{S}_{b} = 0,5 \dot{U}_{b} \overline{I}_{b} = P_{b} + j Q_{b}, \ \dot{S}_{c} = 0,5 \dot{U}_{c} \overline{I}_{c} = P_{c} + j Q_{c}, \\ \dot{S} &= \dot{S}_{a} + \dot{S}_{b} + \dot{S}_{c} = (P_{a} + P_{b} + P_{c}) + j (Q_{a} + Q_{b} + Q_{c}). \end{split}$$

Алгоритмы измерения параметров режима энергосистемы

В ЭНИП производятся измерения действующих значений токов и напряжений, а также для вычисления полной, активной и реактивной мощности по отдельным фазам с учетом высших гармоник (до 20 включительно).

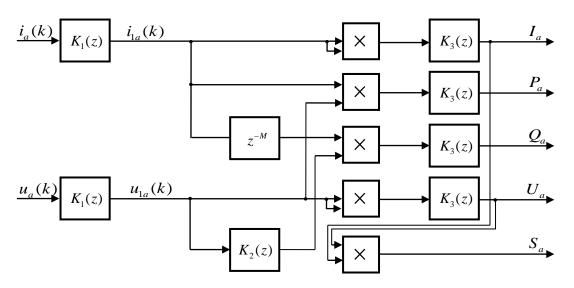
Для измерения параметров режима электрической сети (действующие значения переменного тока и напряжения, активной, реактивной и полной мощностей, энергии активной и реактивной в прямом и обратном направлениях) используются следующие известные выражения:

$$I_a = \sqrt{\frac{1}{T_1} \int_{t-T_1}^t i_a^2(\tau) d\tau}, U_a = \sqrt{\frac{1}{T_1} \int_{t-T_1}^t u_a^2(\tau) d\tau},$$

$$P_{a} = \frac{1}{T_{1}} \int_{t-T_{1}}^{t} u_{a}(\tau) i_{a}(\tau) d\tau, \quad Q_{a} = \frac{1}{T_{1}} \int_{t-T_{1}}^{t} \hat{u}_{a}(\tau) i_{a}(\tau) d\tau,$$

$$P = P_a + P_b + P_c$$
, $Q = Q_a + Q_b + Q_c$,

$$S_a = U_a I_a$$
, $S = S_a + S_b + S_c$,


где T_1 - период основной гармоники с частотой 50 Гц,

 $\hat{u}_a(au)$ - напряжение, начальные фазы основной гармоники и всех высших гармоник которого относительно соответствующих гармоник напряжения фазы a сдвинуто на угол $\pi/2$.

При этом активная/реактивная мощность определяются как сумма активных/реактивных мощностей отдельных гармоник.

Ниже приведена упрощенная структурная схема алгоритма измерения действующих значений тока и напряжения, полной, активной и реактивной мощности фазы *a*.

Цифровые фильтры с системной функцией $K_1(z)$ используются для подавления в сигналах, соответствующим фазным токам и напряжениям, экспоненциальных составляющих электромагнитных переходных процессов. Установившееся значение выходных сигналов на выходе фильтров соответствует периодическому сигналам $i_{1a}(k)$ и $u_{1a}(k)$.

Для реализации приведенных выше выражений используются следующие алгоритмы для измерения и вычисления среднеквадратических (действующих) значений фазных токов и напряжений, полной, активной и реактивной мощности отдельной фазы

$$\begin{split} I_{\rm a}(k) &= \sqrt{\sum_{n=k-N+1}^k i_{\rm 1a}^{\ 2}(n)g_3(k-n)} \,, \\ P_{\rm a}(k) &= \sqrt{\sum_{n=k-N+1}^k i_{\rm 1a}^{\ 2}(n)g_3(k-n)} \,, \\ P_{\rm a}(k) &= \sum_{n=k-N+1}^k i_{\rm 1a}(n)u_{\rm 1a}(n)g_3(k-n) \,, \,\, Q_{\rm a}(k) = \sum_{n=k-N+1}^k i_{\rm 1a}(n)\hat{u}_{\rm 1a}(n)g_3(k-n) \,, \end{split}$$

$$S_{\rm a}(k) = U_{\rm a}(k)I_{\rm a}(k)$$
,

где T = 0,0005 - шаг дискретизации, $k \cdot T$ - текущее дискретное время,

 $g_3(k)$ - импульсная функция усредняющего КИХ-фильтра с системной функцией $K_3(z)$, N - длина КИХ-фильтра (N =100).

При этом импульсная функция усредняющего КИХ-фильтра $K_3(z)$ синтезирована таким образом, чтобы обеспечить независимость результатов измерений от девиации частоты в энергосистеме.

Проектирование фильтров, применяемых в алгоритмах для измерения реактивной мощности, имеет свои особенности. В первую очередь необходимо обеспечить изменение начальной фазы всех гармоник напряжения на угол 90° с учетом девиации частоты энергосистемы. В теории цифровой обработки сигналов для решения подобных задач применяется специальный фильтр - цифровой преобразователь Гильберта и согласованная линия задержки.

В ЭНИП для точного измерения реактивной мощности как суммы реактивных мощностей отдельных гармоник используются цифровые преобразователи Гильберта с системной функцией $K_2(z)$ и согласованная линия задержки (M=100).

Использование преобразования Гильберта и связанного с данным преобразованием аналитического сигнала, позволяет производить определение огибающей и мгновенной частоты. Но это корректно только для узкополосных процессов с нулевым моментом. Применение же указанного преобразования для периодических сигналов допустимо лишь при очень малом уровне высших гармоник. Дело в том, что при наличии во входном сигнале высших гармоник при возведении в квадрат и последующим суммированием входного и сопряженного по Гильберту сигналов наряду с постоянными составляющими присутствуют опять-таки гармоники. К аналогичному результату приведет вычисление реактивной энергии через составляющие аналитического сигнала напряжения и тока.

Использование усредняющих КИХ-фильтров $K_3(z)$ позволяет удалить из сигналов перечисленные составляющие и обеспечить требуемую точность вычисления реактивной мощности при любом реальном существующем в энергосистемах уровне высших гармоник.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42

Россия (495)268-04-70

Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

www.enserv.nt-rt.ru || epn@nt-rt.ru